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FORMING MENTAL MODELS

The Role of Representational and  
Computational Complexity in Belief Formation†

By Cuimin Ba, J. Aislinn Bohren, and Alex Imas*

A growing body of theoretical and experimental research explores how individuals respond to 
information in complex environments. Previous studies have explored how people simplify and dis-
tort information in specific cognitively demanding situations, but less focus has been placed on dis-
tinguishing between different sources of complexity.

This paper builds on the two-stage belief updating model of Ba, Bohren, and Imas (2024) to study the 
interaction between representational and computational complexity. We consider a standard belief updat-
ing problem where an agent learns about an unknown state from a signal. The agent uses a two-stage 
process to form her subjective belief. In the representational stage, the agent forms a mental model of 
the information structure, which we refer to as a mental representation. In the processing stage, the agent 
processes the signal by applying a noisy version of Bayes’ rule to her mental representation.

As the number of states increases, the cognitive demands of representing and processing informa-
tion also increase. Specifically, a larger state space has greater representational complexity, as con-
strained attention makes it more difficult to attend to and mentally represent the information structure. 
It also has greater computational complexity, as processing constraints make it more difficult to carry 
out the computation necessary for Bayes’ rule. Thus, both stages may be subject to more distortions.

Ba, Bohren, and  Imas (2024) focus on environments where representativeness is present as a 
salience cue. They find that people mitigate these cognitive demands by channeling attention to a lim-
ited number of salient states. This dominates the impact of processing constraints, leading to excess 
movement of beliefs—that is, overreaction.

This paper focuses on environments where there are no obvious salience cues, and hence, the inter-
action between computational complexity and processing constraints may play a more prominent role 
in belief updating. We hypothesize that in such environments, participants will underreact. Moreover, 
cognitive imprecision (i.e., processing noise) will increase in the complexity of the environment, 
leading to more underreaction. We test this hypothesis in an online experiment. Participants were 
assigned to either a simple information environment with two states or a complex environment with 
five states. Consistent with our hypothesis, participants underreacted in both conditions, and more so 
in the complex one. Structural estimates suggest that this pattern is driven by higher cognitive impre-
cision in the complex condition.

I.  Model of Belief Updating

An agent learns about an unknown state ​ω​ drawn from state space ​Ω  ≡  {​ω​1​​, … , ​ω​N​​}  ⊂ ​ (0, 1)​​ 
with ​​ω​1​​  <  …  < ​ ω​N​​​ according to uniform prior ​​p​0​​  = ​ (1 / N, … , 1 / N)​​.1 The agent observes a draw 

1 We assume a uniform prior for simplicity; the results naturally extend to more general priors.
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of a binary signal ​s  ∈ ​ {​s​1​​, ​s​2​​}​​ distributed according to ​π​(​s​2​​ | ​ω​i​​)​  = ​ ω​i​​​ and ​π​(​s​1​​ | ​ω​i​​)​  =  1 − ​ω​i​​​ in 
state ​​ω​i​​​. We refer to ​Ω​ as the information structure, since the values of the state pin down the signal 
distribution. We focus on symmetric information structures—that is, ​​ω​i​​  ∈  Ω​ implies that ​1 − ​ω​i​​ 
∈  Ω.​ By Bayes’ rule, the objective posterior probability of state ​​ω​i​​​ following signal realization ​​
s​2​​​ is ​​p​B​​​(​ ω​i​​ | ​s​2​​)​  = ​ ω​i​​ / ​∑ ​ω​k​​∈Ω​ 

 
 ​​ ​ω​k​​​ and analogously ​​p​B​​​(​ω​i​​ | ​s​1​​)​  = ​ (1 − ​ω​i​​)​ / ​∑ ​ω​k​​∈Ω​ 

 
 ​​​(1 − ​ω​k​​)​​ following ​​

s​1​​ .​ Let ​​p​B​​​(​s​j​​)​  = ​ (​p​B​​​(​ω​1​​ | ​s​j​​)​, … , ​p​B​​​(​ω​N​​ | ​s​j​​)​)​​ denote the objective posterior distribution and ​​E​B​​​[ω | ​s​j​​]​  

≡ ​ ∑ ​ω​k​​∈Ω​ 
 
 ​​ ​ω​k​​ ​p​B​​​(​ω​k​​ | ​s​j​​)​​ denote the objective posterior expected state, with an analogous definition for 

the prior expected state ​​E​0​​​[ω | ​s​j​​]​​.
Following Ba, Bohren, and Imas (2024), the agent uses a two-stage process to form beliefs. First, 

she forms a mental model ​​π ˆ ​​ of the information structure, which we refer to as a mental representation. 
This representation simplifies the information environment by channeling attention to certain states 
and neglecting others. Second, the agent processes the signal by applying a noisy version of Bayes’ 
rule to her mental representation.

In the first stage, attention constraints interact with the representational complexity of the 
information environment. Representational complexity is increasing in the number of states ​N​, 
as it captures the number of objects the agent needs to consider to form an accurate mental rep-
resentation. While the belief updating model in Ba, Bohren, and  Imas (2024) primarily focuses 
on salience-channeled attention, it can also be applied to environments with no salience cues 
where the agent channels attention as-if randomly. In this variation of the model, the agent chan-
nels attention to the first state she considers. Each state ​​ω​i​​  ∈  Ω​ is equally likely to be attended 
to first, and all states that are not attended to first receive equal attention. This is modeled as 
a mental representation where the likelihood of signal realization ​​s​j​​​ in the attended-to-first state ​​
ω​i​​​ is scaled up by attention weight ​​α​1​​  >  1 ,​ ​​​π ˆ ​​i​​​(​s​j​​ | ​ω​i​​)​  = ​ α​1​​ π​(​s​j​​ | ​ω​i​​)​​, and the likelihood of ​​s​j​​​ 
in not-attended-to-first states ​​ω​k​​  ≠ ​ ω​i​​​ is scaled down by attention weight ​​α​2​​  ∈ ​ (0, 1)​ ,​ 
​​​π ˆ ​​i​​​(​s​j​​ | ​ω​k​​)​  = ​ α​2​​ π​(​s​j​​ | ​ω​k​​)​​. The extent to which attention is constrained, and therefore channeled dif-
ferentially across states, is captured by the extent to which parameters ​​α​1​​​ and ​​α​2​​​ differ from one.

In the second stage, processing constraints interact with the computational complexity of belief 
formation. Computational complexity is also increasing in the number of states ​N​, as it captures the 
number of operations the agent needs to compute when implementing the relevant algorithm (Oprea 
2020)—in this case, Bayes’ rule. This interaction leads the agent to exhibit cognitive imprecision 
when using her mental representation to update beliefs. Following Woodford (2020) and Khaw, Li, 
and Woodford (2021), we model cognitive imprecision as the agent using a noisy cognitive signal 
of the underlying posterior to form her subjective posterior. Here, the relevant underlying posterior  
​​p​R,i​​​(​s​j​​)​​ is the Bayesian update with respect to the agent’s mental representation given observed signal 
realization ​​s​j​​​ and first-attended-to state ​​ω​i​​​. Specifically, letting ​α  ≡ ​ α​1​​ / ​α​2​​​,

(1)	 ​​p​R,i​​​(​ω​i​​ | ​s​2​​)​  = ​   
​ω​i​​ _____________  

​ω​i​​ + ​ 1 _ α ​ ​∑ k≠i​ 
 
 ​​ ​ω​k​​

 ​  and​

(2)	​​ p​R,i​​​(​ω​k​​ | ​s​2​​)​  = ​   
​ω​k​​ _____________  

α​ω​i​​ + ​∑ k≠i​ 
 
 ​​ ​ω​k​​

 ​,  k  ≠  i.​

Following the model of cognitive imprecision from Ba, Bohren, and Imas (2024), this results in a 
mean observed posterior

(3)	​​​ p ˆ ​​i​​​(​s​j​​)​  ≡  λ ​p​R,i​​​(​s​j​​)​ + ​(1 − λ)​ ​​p – ​​0​​  ∈  Δ​(Ω)​​,

when the agent observes realization ​​s​j​​​ and attends to state ​​ω​i​​​ first, where ​λ  ∈ ​ [0, 1]​​ measures the 
agent’s cognitive precision and ​​​p – ​​0​​  ∈  Δ​(Ω)​​ is the cognitive default, which is taken to be uniform as 
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in Enke and Graeber (2023) and Ba, Bohren, and Imas (2024).2 We refer to ​​​p ˆ ​​i​​​(​s​j​​)​​ as the subjective 
posterior. Cognitive imprecision is decreasing in ​λ​: ​λ  =  1​ corresponds to no cognitive imprecision, 
where the agent’s subjective posterior is the Bayesian update with respect to her mental representa-
tion, while ​λ  =  0​ corresponds to full cognitive imprecision, where the agent’s belief remains cen-
tered at her cognitive default following both signal realizations.

As in Ba, Bohren, and Imas (2024), we measure the magnitude of over- or underreaction using the 
overreaction ratio,

(4)	​​ r​i​​​(​s​j​​)​  ≡ ​  
​​E ˆ ​​i​​​[ω | ​s​j​​]​ − ​E​B​​​[ω | ​s​j​​]​

  _________________  
​E​B​​​[ω | ​s​j​​]​ − ​E​0​​​[ω | ​s​j​​]​

 ​,​

where ​​​E ˆ ​​i​​​[ω | ​s​j​​]​  ≡ ​ ∑ ​ω​k​​∈Ω​ 
 
 ​​ ​ω​k​​ ​​p ˆ ​​i​​​(​ω​k​​ | ​s​j​​)​​ denotes the subjective posterior expected state. The  

agent’s reaction depends on the state attended to first. We focus on the average reaction across all 
random attention allocations,

(5)	​ r​(​s​j​​)​  ≡ ​  1 _ 
N

 ​ ​ ∑ 
​ω​i​​∈Ω

​ 
 

 ​​​r​i​​​(​s​j​​)​.​

We say that the agent overreacts if ​r​(​s​j​​)​  >  0​, underreacts if ​r​(​s​j​​)​  ∈ ​ [−1, 0)​​, and reacts in the wrong 
direction if ​r​(​s​j​​)​  <  −1​.3

Prediction 1 compares how the agent’s average reaction varies with the complexity of the state 
space. It shows that if cognitive precision declines sufficiently as complexity increases, then underre-
action increases. The proof is in the Supplemental Appendix.

PREDICTION 1: Consider two information structures ​Ω​ and ​​Ω ′ ​​ with different complexities, ​N  < ​ N ′ ​ ,​  
and the same extreme states, ​​ω​1​​  = ​ ω​ 1​ ′ ​​ and ​​ω​N​​  = ​ ω​ ​N ′ ​​ ′ ​​. Given attention parameters ​α  = ​ α ′ ​  >  1​ and 
cognitive precision parameters ​λ, ​λ ′ ​  ∈ ​ [0, 1]​​, the agent underreacts to both signal realizations in both 
environments, ​r​(​s​j​​)​  ∈ ​ [−1, 0)​​ and ​​r ′ ​​(​s​j​​)​  ∈ ​ [−1, 0)​​ for ​j  =  1, 2​. Moreover, there exists an ​ε  ∈ ​ (0, λ)​​ 
such that if the agent exhibits sufficiently more cognitive imprecision in the more complex environment ​​
Ω ′ ​​, ​​λ ′ ​  <  λ − ε​, then the agent underreacts more in ​​Ω ′ ​​ than ​Ω​, ​​r ′ ​​(​s​j​​)​  <  r​(​s​j​​)​​ for ​j  =  1, 2​.

The agent’s cognitive constraints interact with the representational and computational complexity 
of the information environment to determine her reaction to information. The state the agent attends 
to first can lead to overreaction or underreaction. For example, following signal realization ​​s​2​​​ that is 
most likely in state ​​ω​N​​​, attending to ​​ω​N​​​ first leads the agent to overweigh it—and hence, to overreact. 
In contrast, attending to ​​ω​1​​​ first leads the agent to overweigh it—even though it is least likely to gen-
erate ​​s​2​​​—and hence, to underreact. However, since the mass on ​​ω​1​​​ should decrease following ​​s​2​​​ while 
the mass on ​​ω​N​​​ should increase, overweighing ​​ω​1​​​ results in a larger distortion than overweighing ​​ω​N​​ .​ 
This implies that, on average, random attention leads to underreaction. Cognitive imprecision rein-
forces this underreaction. As a result, if computational complexity increases cognitive imprecision, 
this leads to greater underreaction.4

2 Formally, the model of cognitive imprecisions is as follows. The cognitive signal of ​​p​R,i​​​(​s​j​​)​​ is drawn from a multinomial 
distribution with event probabilities ​​p​R,i​​​( ⋅ |​s​j​​)​​, ​N​ categories, and ​η  ≥  0​ trials. The cognitive prior over ​​p​R,i​​​( ⋅ |​s​j​​)​​ follows a 
Dirichlet distribution with ​N​ categories and concentration parameters ​ν ⋅ ​​p – ​​0​​​. The agent uses Bayes’ rule to form a cognitive 
posterior about the distribution of ​​p​R,i​​​(​s​j​​)​​ given her cognitive prior and the cognitive signal. The mean observed posterior is the 
expectation of the average cognitive posterior conditional on ​​p​R​​​(​s​j​​)​​, where ​λ  =  η / ​(η + ν)​​.

3 If ​r​(​s​j​​)​  =  0​, the subjective and objective posterior expected states coincide.
4 Note that random attention on its own does not necessarily generate this comparative static: When there is no cognitive 

imprecision, whether increasing the number of states leads to more or less underreaction depends on the information environment.
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II.  Experimental Design

To test Prediction 1, we recruited 247 subjects from Prolific to participate in a controlled experi-
ment. As in Ba, Bohren, and Imas (2024), we adopted the classic “bookbag-and-poker-chip” design 
and elicited posterior beliefs in various information environments. Participants first learned about 
the general design of the information environment but not the exact information structure. To learn 
the information structure, participants had to click on each state to display the probability of signal 
realization ​​s​1​​​ versus ​​s​2​​​ in that state. This procedure eliminated readily available salience cues such as 
representativeness.

We used the Mouselab design of Payne, Bettman, and Johnson (1988) to measure attention; they 
showed that the object that is clicked first is a valid measure of attention. Using this design, Ba, 
Bohren, and Imas (2024) showed that the state participants clicked first received increased weight in 
the posterior belief.

We compare participants’ posterior beliefs in simple and complex information environments:

•	 Simple: ​​Ω​2​​  = ​ {​ω​1​​, ​ω​1​​}​​, where ​​ω​1​​  ∈ ​ {0.1, 0.2, 0.3, 0.4}​​.
•	 Complex: ​​Ω​5​​  = ​ {​ω​1​​, ​ω​2​​, 0.5, 1 − ​ω​2​​, 1 − ​ω​1​​}​​, where ​​ω​1​​  ∈ ​ {0.1, 0.2, 0.3, 0.4}​​, ​​ω​2​​  ∈ ​

{0.2, 0.3, 0.4, 0.45}​​, and ​​ω​1​​  < ​ ω​2​​​.

Per our preregistration, we exclude observations in which participants react in the wrong direction.

III.  Results

First Clicks.—We first test the assumption that our paradigm removed salience cues and generated 
random attention. As shown in Figure 1, the fraction of participants who clicked each state first was 
evenly distributed across states in both the simple and complex conditions. Thus, attention was allo-
cated randomly across states, as in the setup presented in Section I.

Over- and Underreaction.—Consistent with Ba, Bohren, and Imas (2024) and Prediction 1, when 
salience cues were absent, participants overwhelmingly underreacted on average in both the simple 
and complex conditions: The overreaction ratio was negative across all information structures in both 
conditions (see Figure 2). This contrasts with Ba, Bohren, and Imas (2024), where participants over-
whelmingly overreacted in complex five-state environments when the representativeness salience cue 
was present.

Figure 1. Participants’ First Clicks Are as-if Random
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To study the role of computational complexity, we compare underreaction across both complexity 
conditions. In line with Prediction 1, agents underreacted more in the complex condition compared 
to the simple one: Averaging across all information environments of a given complexity, the overre-
action ratio was −0.53 in the complex condition and −0.36 in the simple one (​p  <  0.01​). Similarly, 
a higher share of participants (83.6 percent) underreacted in the complex condition compared to the 
simple condition (73.4 percent). Figure 2 shows that this pattern also generally holds when infor-
mation environments are disaggregated by the value of the highest state (which corresponds to the 
highest probability of generating signal realization ​​s​2​​​): The overreaction ratio was significantly lower 
in the complex five-state environments compared to the analogous two-state environment for three 
of the four values considered (the exception is information environments with ​​ω​N​​  =  0.7​). This con-
trasts starkly with the finding in Ba, Bohren, and Imas (2024) when the representativeness salience 
cue was present: In this case, channeling attention to the most representative state resulted in more 
overreaction in the complex condition.

Taken together, these results provide strong evidence for the importance of both channeled atten-
tion and processing constraints in belief formation. As shown in Ba, Bohren, and Imas (2024), when 
representativeness is present as a salience cue, salience-channeled attention plays a dominant role 
and leads to overreaction. In contrast, when salience cues are absent, randomly channeled attention 
interacts with processing constraints to generate underreaction. In such environments, the impact of 
higher computational complexity on cognitive precision has a dominant effect, leading to greater 
underreaction.

Structural Estimation.—Finally, we structurally estimate the attentional distortion and cognitive 
precision parameters for each condition. The results are presented in Table 1. The attentional distor-
tion parameter ​α​ is estimated at 1.06 for the simple condition and 1.20 for the complex condition. 
This difference is not statistically significant, suggesting similar attentional distortions across both 
conditions. In contrast, cognitive imprecision increased with complexity: The cognitive precision 
parameter ​λ​ was significantly higher in the simple condition than the complex condition (0.58 versus 
0.42, ​p  <  0.01​). Taken together, these estimates suggest that the interaction between computational 
complexity and cognitive imprecision played a key role in generating more underreaction in the com-
plex condition (as predicted by Prediction 1).

Figure 2. Overreaction Ratio Varies with Complexity

Notes: Each data point aggregates all information environments with a given highest state ​​ω​N​​​ in the relevant complexity 
condition.
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IV.  Conclusion

We show that increased state-space complexity amplifies distortions in both the mental representa-
tion and processing stage of belief formation. Theoretically and empirically, we show that if attention 
is channeled as-if randomly, then cognitive imprecision reinforces attention distortions in shaping 
beliefs, leading to more underreaction as state-space complexity increases. This contrasts with the 
findings in Ba, Bohren, and Imas (2024), where representativeness salience cues are present. In their 
paper, representativeness-channeled attention distortions dominate cognitive imprecision in shaping 
beliefs, resulting in more overreaction as state-space complexity increases. These findings underscore 
the importance of considering the interaction between psychological frictions in belief updating. They 
also open avenues for further exploration of how other salience cues or learning may mitigate these 
effects.
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Table 1—Parameter Estimates

​α​ 95% CI ​λ​ 95% CI

Simple 1.06 [1.00, 1.20] 0.58 [0.52, 0.65]
Complex 1.20 [1.01, 1.55] 0.42 [0.35, 0.46]

Notes: Parameter estimates minimize the average Kullback–Leibler divergence 
of the model-predicted subjective posteriors from the reported posteriors, aggre-
gating across all information environments in the relevant complexity condition. 
The 95 percent confidence intervals are obtained from 300 bootstrap samples.
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