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C More Auxiliary Lemmas

Lemma 6. Suppose the agent maximizes the discounted sum of payoffs under her

current model with discount factor δ. For any θ ∈ Θ, the optimal action correspondence

Aθ : ∆Ωθ ⇒ A is upper hemicontinuous in both the belief π and the discount factor δ.

Proof. This follows from standard results in dynamic programming. Under continuity

and boundedness of the payoff function and compactness of the action space A, the

optimal action correspondence is upper hemicontinuous in both belief and discount

factor (see Blackwell, 1965; Maitra, 1968).

Lemma 7. If σ is a p-absorbing SCE, then for any γ ∈ (0, 1) and ϵ > 0, there exists a

full-support prior πθ0 at which, with probability at least γ, a θ-modeler only plays actions

in supp(σ) and her belief stays within Bϵ(∆Ωθ(σ)) for all periods.

Proof. Suppose σ is a p-absorbing SCE under model θ, and consider the learning

process of a θ-modeler starting from a full-support prior πθ0 ∈ ∆Ωθ. By definition,

there exists πθ0 such that with positive probability, she eventually only plays actions in

supp (σ) and each element of supp (σ) is played infinitely often (this is without loss of

generality). Denote those paths by H̃. Then by a similar argument as in the proof of

Lemma 1, πθt a.s. converges to a limit πθ∞ on H̃, with supp
(
πθ∞

)
⊆ Ωθ(σ) = {ω ∈ Ωθ :

q∗ (·|a) = qθ (·|a, ω) ,∀a ∈ supp (σ)}.
This implies the existence of an integer T > 0 such that, with positive probability,

we have at ∈ supp(σ),∀t ≥ T , and πθt converges to a limit πθ∞ with supp(πθ∞) ⊆ Ωθ(σ).
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Pick any ϵ > 0. Since the learning process is Markov, we can find a posterior in one

of those paths and use it as a new prior, π̃θ0 ∈ Bϵ(∆Ωθ(σ)), under which, on a positive

measure of histories, a θ-modeler behaves such that (1) at ∈ supp(σ),∀t ≥ 0, and (2)

the posterior πθt never leaves Bϵ(∆Ωθ(σ)) for all t ≥ 0. Let E denote the event that

both (1) and (2) hold. Define a stopping time T as the first period in which either (1)

or (2) is not met. Let ãt = amin{T,t} and π̃θt = πθmin{T,t}. Then the probability of event

E is the same as the probability of event E ′, defined by: (1’) ãt ∈ supp(σ),∀t ≥ 0; and

(2’) π̃θt never leaves Bϵ(∆Ωθ(σ)), ∀t ≥ 0.

Suppose, toward a contradiction, that no full-support prior exists such that PD(E ′) >

γ. Denote the probability of E ′ given any πθ by γ(πθ), and define the supremum

γ := supπθ
0∈int(∆Ωθ) γ(π

θ). Then by assumption, γ < 1. By definition, for any ψ > 0,

there exists some prior πθ,ψ0 such that γ ≥ γ(πθ,ψ0 ) > γ − ψ. But under this prior,

with probability 1 − γ(πθ,ψ0 ), the dogmatic modeler eventually sees ãt ̸∈ supp(σ) or

πθt ̸∈ Bϵ(∆Ωθ(σ)). So for sufficiently large t,

PD
(
γ(πθ,ψt ) = 0

)
> 1− γ(πθ,ψ0 )− ψ ≥ 1− γ − ψ.

Now, consider the supremum probability that E is achieved if the agent starts with a

prior that is equal to posterior πθ,ψt . Since γ(πθ,ψ0 ) = EPD
ht∈Ht

γ(πθ,ψt ) for all t ≥ 1, we

have

sup
ht∈HT

γ(πθ,ψT ) ≥ γ(πθ,ψ0 )

1− PD
(
γ(πθ,ψt ) = 0

) >
γ − ψ

γ + ψ
.

But notice that when ψ is sufficiently small, the last term is strictly larger than γ,

contradiction.

Lemma 8. Take any model θ ∈ Θ and any ω ∈ Ωθ. There exists γ : (0, 1) → (0, 1)

such that given any set Y ⊂ Y such that Qθ(Y |a, ω) > γ with γ ∈ (0, 1), we have

Q∗(Y |a) > γ(γ) and limγ→1 γ(γ) = 1.

Proof. If there does not exist γ : (0, 1) → (0, 1) such that the statement holds, then

there exists γ < 1 such that for any η ∈ (0, 1), there exists γ > η and Y ⊆ Y such that

Qθ(Y |a, ω) > γ and yet Q∗(Y |a) < γ. Let {ηn} be a strictly increase sequence and

limn→∞ ηn = 1. Then for each n, we can find a set Y̌n ⊆ Y such thatQθ(Y̌n|a, ω) < 1−ηn
and Q∗(Y̌n|a) > 1− γ. Since limn→∞Qθ(Y̌n|a, ω) = 0 and qθ(·|a, ω) is positive, it must

be that limn→∞ ν(Y̌n) = 0. Since Q∗ is absolutely continuous w.r.t. ν, it follows that

limn→∞Q∗(Yn|a) = 0, a contradiction.
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Lemma 9. Fix model θ ∈ Θ and ω ∈ Ωθ. For any r > 0 and γ < 1, there exists

ϵ > 0 such that, if model θ′ ∈ Θ and ω′ ∈ Ωθ′ satisfy d(Qθ,ω, Qθ′,ω′
) ≤ ϵ, then letting

Ya,r := {y ∈ Y : qθ
′
(y|a, ω′) ≤ (1 + r)qθ(y|a, ω)} we have Q∗(Ya,r|a) > γ for any a ∈ A.

Proof. We first show that the statement holds if we replace “Q∗(Ya,r|a) > γ” with

“Qθ(Ya,r|a, ω) > γ”. Suppose the statement does not hold for some given r > 0 and

γ < 1 for contradiction. Then for any ϵ > 0 we can find a model θ′ and ω′ satisfying

d(Qθ,ω, Qθ′,ω′
) ≤ ϵ such that Qθ(Ya,r|a, ω) ≤ γ for some a ∈ A. Note that this implies

Qθ(Y \ Ya,r|a, ω) ≥ 1− γ. In addition,

Qθ′(Y \ Ya,r|a, ω′) =

∫
Y\Ya,r

qθ
′
(y|a, ω′)ν(dy)

>

∫
Y\Ya,r

(1 + r)qθ(y|a, ω)ν(dy)

≥ Qθ(Y \ Ya,r|a, ω) + r(1− γ)

where the first inequality follows from the fact that y ∈ Y \Ya,r and the second follows

from Qθ(Y \ Ya,r|a, ω) ≥ 1− γ.

On the other hand, since d(Qθ,ω, Qθ′,ω′
) ≤ ϵ, we know that for all Y ⊆ Y , Qθ′(Y |a, ω′) ≤

Qθ(Bϵ(Y )|a, ω) + ϵ. Let Y = Y \ Ya,r, then

Qθ′(Y \ Ya,r|a, ω′) ≤ Qθ(Bϵ(Y \ Ya,r)|a, ω) + ϵ.

However, when ϵ is sufficiently small, since qθ is continuous, the right-hand side of the

above inequality must be smaller than Qθ(Y\Ya,r|a, ω)+r(1−γ). Since this contradicts
the previous inequality, we must have Qθ(Ya,r|a, ω) > γ. Furthermore, by Lemma 8, we

can choose ϵ sufficiently small and η sufficiently close to 1 such that Qθ(Ya,r|a, ω) > η

and Q∗(Ya,r|a) > γ.

D Omitted Examples in Section 4

D.1 A P-Absorbing Mixed SCE

Example 2. Consider a dogmatic modeler who holds model θ that contains three pa-

rameters Ωθ = {ω1, ω2, ω3} = {1, 1.5, 2}. There are two actionsA = {1, 2}. The agent’s
payoff is simply the outcome yt, with the true DGP being the normal distribution

N(0.25, 1) for all actions. Model θ is misspecified, predicting that yt ∼ N((ω−at)
2, 1).
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Note that every mixed action is a self-confirming equilibrium, with the supporting be-

lief assigning probability 1 to the parameter value ω∗
2 = 1.5. Here, every fully mixed

SCE is p-absorbing since it is quasi-strict: its support contains all actions.

But her action sequence never converges. To see that, notice that the agent’s optimal

action is unique when her posterior belief assigns different probabilities to ω1 and ω3. In

particular, her optimal action if 1 when πθt (ω1) < πθt (ω3) and 2 when πθt (ω1) > πθt (ω3).

When playing a = 2, the agent anticipates the outcome to be distributed according

to yt ∼ N((ω − 2)2, 1). However, given the true distribution N(0.25, 1), the agent

eventually attaches a lower probability to ω1 than ω3, which then leads her to play

a = 1. By a similar logic, the agent cannot settle on action a = 1 either. Therefore,

the agent perpetually oscillates between the two actions, while her belief converges to

a degenerate distribution at ω2 since it outperforms the other two parameter values by

fitting the data perfectly.

D.2 A SCE That Is Not P-Absorbing

Example 3. Consider a dogmatic modeler who holds model θ that contains three

parameters Ωθ = {1, 2, 3}. There are two actions A = {1, 3}. The agent’s payoff is the

absolute value of the outcome, |yt|. The true DGP of yt given by a normal distribution

N(1, 1) for all actions. Model θ is misspecified and predicts that yt ∼ N(ω − at, 1).

Note that θ admits a single self-confirming equilibrium in which the agent plays a∗ = 1

with probability 1, supported by a belief that assigns probability 1 to ω∗ = 2. However,

this SCE is not p-absorbing. To see that, notice that the agent is indifferent between

the two actions when the parameter takes the value of 2. When the agent keeps playing

a = 1, the parameters 1 and 3 fit the data equally well on average, so their log-posterior

ratio is a random walk which a.s. crosses 1 infinitely often. However, the high action

a = 3 is strictly optimal against any belief that assigns a higher probability to ω = 1

than ω = 3. Hence, the high action must be played infinitely often almost surely.

D.3 Another Type of Traps

Example 4. Consider an agent who chooses from A = {a1, a2, a3} and observes out-

comes from Y = {0, 1}. The true DGP prescribes yt = 1 with probability 0.5 for all

actions. Given action at and a realized outcome yt, the agent obtains a flow payoff of

yt+h(at), where h(a
1) = 0, h(a2) = −0.3, and h(a3) = 0.01. The agent holds an initial

model θ and considers a correctly specified competing model θ′ same as the true model,
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qθ(1|a, ω) ω1 ω2

a1 0.5 0.3

a2 0.6 0.7

a3 0.49 0.29

qθ
′
(1|a, ω) ω∗

a1 0.5

a2 0.5

a3 0.5

Table 1: Initial model θ and competing model θ′ in Example 4.

as described in Table 1, and she employs a switching threshold of α = 3. Under model

θ, both a1 and a3 are optimal when πθt (ω1) ≥ 1/3, and a2 is optimal when πθt (ω
1) ≤ 1/3.

Therefore, δa1 is a SCE with a supporting belief δω1 , but it is not quasi-strict because

a2 is also optimal at this belief. Under model θ′, a3 is the uniquely optimal action at

all beliefs. Suppose α = 1.2. As illustrated below, action a2 functions as a trap that

prevents the “switcher” agent from ever playing a1 under model θ.

Suppose the agent starts with a prior with πθ0(ω
1) = 1/3 such that she plays a2 in

period 0. In addition, suppose the agent adopts a pure policy under θ that prescribes

a1 for a countable set of beliefs A, where

A =

{
π ∈ ∆Ωθ : π(ω1) ≥ 1

3
and

π(ω1)

π(ω2)
=

1

2
· 4
3
·
(
5

7

)m

·
(
5

3

)n

for some m,n ∈ N
}
.

In period t = 0, the agent either (1) draws y0 = 0 and then switches to model θ′ since

λ0 = 1.5 > α, followed by at least one period of playing a3, or (2) draws y0 = 1 and

continues with model θ and a2 in the next period. In scenario (1), the agent’s belief

πθ2 is such that

either
πθ2(ω

1)

πθ2(ω
2)

=
1

2
· 4
3
· 51
71

or
πθ2(ω

1)

πθ2(ω
2)

=
1

2
· 4
3
· 49
29
,

depending on the outcome realization y1. Therefore, the agent will never play a1 in

future periods. Meanwhile, in scenario (2), the agent’s belief is such that

either
πθ2(ω

1)

πθ2(ω
2)

=
1

2
· 6
7
· 6
7
or

πθ2(ω
1)

πθ2(ω
2)

=
1

2
· 6
7
· 4
3
,

depending on the outcome realization y1. Therefore, the agent’s belief πθt will remain

outside of A and thus she will never play a1 in future periods.

While the switcher never converges to the SCE δa1 , a θ-modeler converges to the

SCE with positive probability. To see why, first notice that a θ-modeler also starts by
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playing a2. However, upon drawing y0 = 0, the agent’s belief πθ1 enters A and thus she

chooses a1 thereafter as long as her belief assigns probability weakly higher than 1/3 to

state ω1. Since playing a1 is self-confirming with a supporting belief δω1 , the previous

event indeed occurs with positive probability. Therefore, the SCE is p-absorbing.

E More Details and Results for Applications in Sec-

tion 5

E.1 Application 1: Over- and Underconfidence

Recall that Proposition 1 shows that there exists a sequence b = βK < ... < β1 < β0 =

b∗ such that model θ is not locally robust if b̂ ∈ (β2k, β2k−1) for some k ∈ N+.

Proposition 4. The total measure of ∪k=1(β2k, β2k−1) is bounded below by a positive

number for any discrete A.

Proof. Suppose without loss of generality that gaω > 0 and gab ≤ 0. Suppose A =

{a−N ′
, ..., a−1, a0, a1, ..., aN} ⊂ [a, a], where N,N ′ may be ∞, the actions are strictly

increasing, and a0 = a∗. Fix any n ≥ 0. Denote the fundamental value at which the

agent with b̂ = b is indifferent between an and an+1 as ωn(b), that is,

g(an, b, ωn(b)) = g(an+1, b, ωn(b)). (1)

If ω > ωn(b), then the agent strictly prefers an+1 to an. No self-confirming equilibrium

exists if b̂ ∈ (bn,2, bn,1), with bn,1 and bn,2 defined by

g(an, bn,1, ωn(bn,1)) = g(an, b∗, ω∗), (2)

g(an+1, bn,2, ωn(bn,2)) = g(an+1, b∗, ω∗). (3)

The fact that bn,2 < bn,1 follows from the assumptions that gab ≤ 0, gaω > 0 and

gb, gω > 0. Combining Eq. (1) and Eq. (2),

g(an+1, bn,1, ωn(bn,1)) = g(an, b∗, ω∗). (4)
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Subtracting both sides of Eq. (3) from Eq. (4), and summing across n = 0, 1, ...,

N−1∑
n=0

[
g(an+1, bn,1, ωn(bn,1))− g(an+1, bn,2, ωn(bn,2))

]
= g(a0, b∗, ω∗)− g(aN , b∗, ω∗). (5)

Note that for any n ≥ 0,

g(an+1, bn,1, ωn(bn,1))− g(an+1, bn,2, ωn(bn,2)) (6)

= (bn,1 − bn,2)

(
gb(a

n+1, b′, ωn(b′)) + gω(a
n+1, b′′, ωn(b′′))

∂ωn(b′′)

∂b

)
, (7)

where b′, b′′ ∈ (bn,2, bn,1). Since g is twice continuously differentiable over [a, a]× [b, b]×
[ω, ω], gb and gω is bounded above and below by 0. Differentiate Eq. (1),

∂ωn(b)

∂b
=

gb(a
n, b, ωn(b))− gb(a

n+1, b, ωn(b))

gω(an+1, b, ωn(b))− gω(an, b, ωn(b))
, (8)

which is weakly positive and also bounded above. Together with Eq. (5), this implies

there exists some positive M > 0 such that

N−1∑
n=0

(bn,1 − bn,2) ≥ g(a0, b∗, ω∗)− g(aN , b∗, ω∗)

M
> 0.

E.2 Application 2: Media Bias and Polarization

Micro-Foundation for Agent’s Preference. Under both models, the agent is

assumed to strictly prefer the media outlet whose leaning matches the state of the

world. This preference can be micro-founded by the following utility function,

u(a, y, ω) =


ω if a = aL,

c if a = aM ,

1− ω if a = aR,

where c ∈ (1/2, δ) is a constant. Under either model, the agent strictly prefers aL if the

expected state E(ω) exceeds c, aR if E(ω) is below c, and aM otherwise. This implies

that the agent strictly prefers aL when πθt (ω
L) is sufficiently close to 1, aR when πθt (ω

R)
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is sufficiently close to 1, and aM otherwise. The same applies under models θ̂ and θ∗.

Thus, conditional on the true state being ωM and given the misreporting strategies of

the outlets, aM is the unique SCE under both correctly specified models θ and θ∗, while

aL and aR are two strict SCEs under the misspecified model θ̂. As noted in Section 3,

the main results are unchanged if this component of the payoff is unobservable.

Proof of Proposition 2(ii). Below I prove the result that the probability that θ̂

eventually replaces θ converges to 1 as πθ0(ω
L) or πθ0(ω

R) → 1.

Proof. I show that if πθ0(ω
L) is sufficiently close to 1, the probability that mt converges

to θ̂ can be arbitrarily close to 1. The argument for the case where πθ0(ω
R) is close to

1 is symmetric. First suppose πθ0(ω
L) = 1. Then the agent chooses aL so long as she

remains under θ. Since qθ(l|aL, ωL) = δ+ (1− δ)x > 1
2
+ 1

2
x = q∗(l|aL) = qθ̂(l|aL, ωL) ,

the law of large numbers implies that the probability that mt converges to θ is 0. If in

addition, whenever the agent switches from θ to θ̂, the probability that the agent never

switches back is bounded below by a positive constant, then the agent cannot switch

between θ and θ̂ infinitely often with positive probability and hence mt converge to θ̂.

The next paragraph provides this argument.

Suppose the agent switches from θ to θ̂ at the end of period T , then λT > α, which

implies αℓT (θ, ω
L) < ℓT (θ̂) = πθ̂0(ω

L)ℓT (θ̂, ω
L)+πθ̂0(ω

R)ℓT (θ̂, ω
R). By assumption, there

exists ϵ ∈ (0, 1/2) such that if ϵ ≤ ϵ, the agent strictly prefers aL when πθ̂t (ω
L) ≥ 1− ϵ

and aR when πθ̂t (ω
R) ≥ 1 − ϵ. Thus, if

πθ̂
0(ω

L)ℓT (θ̂,ωL)

πθ̂
0(ω

R)ℓT (θ̂,ωR)
≥ 1−ϵ

ϵ
(call this region 1), then

the agent plays aL upon switching to θ̂. Since ωL predicts the true DGP under θ̂

and aL, by Ville’s maximal inequality for martingales, when ϵ is sufficiently small, the

probability that πθ̂0(ω
L)ℓT (θ̂, ω

L) ≥ max{1−ϵ
ϵ
πθ̂0(ω

R)ℓT (θ̂, ω
R), ℓT (θ, ω

L)/α}, ∀t > T , i.e.

the agent remains under θ̂ and plays aL forever, is bounded below by a positive constant.

Similarly, if
πθ̂
0(ω

L)ℓT (θ̂,ωL)

πθ̂
0(ω

R)ℓT (θ̂,ωR)
≤ ϵ

1−ϵ (call this region 2), then the probability that the agent

remains under θ̂ and plays aR forever is also bounded below by a positive constant.

Suppose instead
πθ̂
0(ω

L)ℓT (θ̂,ωL)

πθ̂
0(ω

R)ℓT (θ̂,ωR)
∈
(

ϵ
1−ϵ ,

1−ϵ
ϵ

)
. If in addition αℓT (θ, ω

L) ≤ ℓT (θ̂, ω
L), then

by drawing r for s > 0 times, both ℓT (θ̂,ωR)
ℓT (θ,ωL)

and ℓT (θ̂,ωR)

ℓT (θ̂,ωL)
increase, pushing the agent’s

posterior towards δωR while ensuring she does not switch away from θ̂. For a fixed

ϵ, there exists a finite s > 0 such that the agent ends up in region 2. Therefore,

the probability that the agent remains under θ̂ and eventually plays aR forever is

bounded below. Similarly, if αℓT (θ, ω
L) ≤ ℓT (θ̂, ω

R), then by analogous reasoning, the

probability that the agent remains under θ̂ and eventually plays aL forever is bounded
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below.

In sum, when πθ0(ω
L) = 1, θ̂ eventually replaces θ with probability 1. Further, the

agent converges to one of the two SCEs under θ̂, aL or aR. Hence, λt diverges to ∞.

Therefore, for any η ∈ (0, 1), ϵ ∈ (0, 1), and λ ∈ R+, there exists T ∈ N such that the

probability that πθ̂t (ω
L) ∈ (0, ϵ)∩(1−ϵ, 1) and λt > λ when t ≥ T is strictly larger than

η. Denote such histories up to period T as ĤT . Since the optimal action correspondence

is upper hemicontinuous in πθ0(ω
L) and λt is continuous in π

θ
0(ω

L) for any given t, when

πθ0(ω
L) is sufficiently close to 1, P(ĤT ) is still strictly larger than η. Take any hT ∈ ĤT

and suppose the agent plays aL in the end. Note that λt > λ
∑

ω∈Ωθ π
θ
0(ω)

∏t
τ=T+1 q

θ(yt|at,ω)∏t
τ=T+1 q

θ̂(yt|at,ω)
.

Since ωL predicts the true DGP under aL, by Ville’s maximal inequality, when ϵ is

sufficiently small and λ is sufficiently large, the probability that πθ0(ω
L) stays within

(1 − ϵ, 1) and λt stays above 1/α is close to 1. Therefore, mt → θ̂ with probability

approaching 1 as πθ0(ω
L) → 1.

F More Results for Extensions in Section 6

F.1 The Likelihood Ratio Test (LRT)

Recall that under the LRT, the agent computes the likelihood ratio using maximum-

likelihood estimates:

λmax
t =

ℓmax
t (θ′)

ℓmax
t (θ)

,

where

ℓmax
t (θ) = max

ω∈Ωθ
ℓt(θ, ω), ℓmax

t (θ′) = max
ω′∈Ωθ′

ℓt(θ
′, ω′).

The agent switches to θ′ if λmax
t exceeds α and to θ if λmax

t falls below 1/α. We have

the following result.

Theorem 4. Suppose the agent uses the LRT rule. Then, for any θ ∈ Θ, there exists

α > 1 such that if α ∈ [1, α), θ cannot be globally robust under any prior. Moreover, if

θ does not have perfect asymptotic accuracy, if Y is a continuum, or if the competing

model may consist of arbitrarily many DGPs, then α = ∞ for all θ ∈ Θ.

Proof. Fix any θ ∈ Θ. Take θ′ ∈ Θ such that the set of DGPs included in θ is a subset

of those in θ′. Consider an agent whose initial model is θ and competing model is θ′.

Once she switches from θ to θ′, she will never switch back, because

ℓmax
t (θ) = max

ω∈Ωθ
ℓt(θ, ω) ≤ max

ω′∈Ωθ′
ℓt(θ

′, ω′) = ℓmax
t (θ′).
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Therefore, it suffices to show that when α is sufficiently close to 1, we can construct θ′

such that switching from θ to θ′ occurs at least once.

The initial model θ and its prior determine the first action a0, which in turn pins

down θ’s predictions for the first outcome, {qθ(·|a0, ω)}ω∈Ωθ . Define the function

qmax : Y → R as qmax(y) = maxω∈Ωθ qθ(y|a0, ω). By Assumption 2 and the finite-

ness of Ωθ, there exists ϵ > 0 and η < 1 such that
∫
Bϵ(y)

qmax(y)dν(y) < η for all

y ∈ Y . The finiteness also implies that there exists a compact set Y ⊂ Y such

that
∫
Y\Y q

max(y)dν(y) < η. Since Y is compact, there exists a finite set U ⊂ Y

such that Y ⊂
⋃
y∈U Bη(y) ∪ (Y \ Y ). For each y ∈ U and each ω ∈ Ωθ, con-

struct a DGP qy,ω satisfying Assumption 2 such that qy,ω(y
′|a0) = qθ(y′|a0, ω)/η for

all y′ ∈ Bη(y). For each ω ∈ Ωθ, construct a DGP qY\Y ,ω satisfying Assumption 2 such

that qY\Y ,ω(y
′|a0) = qθ(y′|a0, ω)/η for all y′ ∈ Y \ Y . Let θ′ include all these DGPs.

Then, regardless of the realization of y0, we have ℓ
max
0 (θ′)/ℓmax

0 (θ) ≥ 1/η. Let α = 1/η;

then the agent must switch to θ′ in the next period if α < α.

If θ does not have perfect asymptotic accuracy, letting θ′ be the true model, a similar

argument as in the proof of Lemma 1 implies that a switch must eventually happen.

Therefore, θ cannot be globally robust at any prior for any α, which implies α = ∞.

If Y is a continuum, the continuity of qθ(·|a0, ω) over Y for all ω ∈ Ωθ allows the

choice of η in the construction above to be made arbitrarily close to zero, implying

α = ∞.

Finally, suppose θ has perfect asymptotic accuracy and Y is countable, but the com-

peting model can consist of an arbitrary number of DGPs. Let Y = {y1, ..., yn, ...} and

θ′ = (∆Y)A, meaning the competing model θ′ consists of all possible data-generating

processes. While this competing model may not satisfy Assumption 2 because some

of its predicted DGPs may not have full-support, this can be addressed by slightly

perturbing θ′ and ensuring that Assumption 2 is satisfied. In the long term, since the

empirical frequency of outcomes converges in probability to the true distribution, the

maximized likelihood ratio between this perturbed model and θ will converge to the

maximized likelihood ratio between θ′ and θ, so the proof goes through.

Since θ′ is correctly specified, a similar argument as in the proof of Lemma 1 implies

that the agent’s actions almost surely converge to the support of an SCE on the paths

where the agent eventually settles on θ. For simplicity, suppose the agent’s actions

converge to a∗ and she plays a∗ starting from period 0. The argument is analogous for

other cases but slightly heavier in notation.

Let qt ∈ ∆(Y) denote the empirical frequency of the realized outcomes, qt(y) =∑t
τ=0 1(yτ = y)/(t + 1). Since θ has perfect asymptotic accuracy and θ′ contains
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all possible DGPs, the likelihood ratio λ̃t is asymptotically bounded below by the

likelihood ratio between the empirical frequency qt and the true DGP, denoted by ξt.

Note that

ln ξt =
∑
yi∈Y

qt(y
i)t

(
ln qt(y

i)− ln(q∗(yi|a∗))
)
= tDKL(qt ∥ q∗(·|a∗)).

By the Law of Large Numbers, qt converges almost surely to the true distribution

q∗(·|a∗). Using Taylor’s expansion,

tDKL(qt ∥ q∗(·|a∗)) =
1

2

∑
yi∈Y

t(qt(y
i)− q∗(yi|a∗))2

q∗(yi|a∗)
+ o

(
t ∥ qt − q∗(·|a∗) ∥2

)
.

By the Central Limit Theorem,
√
t(qt − q∗(·|a∗)) converges in distribution to a multi-

variate normal distribution with time-invariant covariance. Therefore, ln ξt converges

to a chi-squared distribution with |Y| − 1 degrees of freedom (due to the constraint∑
yi∈Y qt(y

i) = 1). Since this is an unbounded distribution, ln ξt crosses any fixed

threshold α > 1 at least once almost surely. This further implies that λ̃t will exceed

any fixed α almost surely. Therefore, α = ∞.

F.2 The Min-Likelihood Ratio Test (Min-LRT)

Recall that under the Min-LRT, the agent computes the likelihood ratio using minimum

likelihood estimates:

λmin
t =

ℓmin
t (θ′)

ℓmin
t (θ)

,

where

ℓmin
t (θ) = min

ω∈Ωθ
ℓt(θ, ω), ℓmin

t (θ′) = min
ω′∈Ωθ′

ℓt(θ
′, ω′).

The agent switches to θ′ if λmin
t exceeds α and to θ if λmin

t falls below 1/α. Theorem 5

states that only singleton models with perfect asymptotic accuracy can be globally

robust. As an immediate corollary, any such model is globally robust at all priors.

Theorem 5. Suppose the agent uses the Min-LRT rule and considers θ ∈ Θ that

satisfies the no-trap condition. Then, for any α ≥ 1, model θ is globally robust at any

full-support prior πθ0 if and only if θ is a singleton model and has perfect asymptotic

accuracy, i.e., Ωθ = Cθ and |Ωθ| = 1.

Proof. Take any θ ∈ Θ that satisfies the no-trap condition. I first prove the “only if”
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direction. Suppose that θ is globally robust, but either not a singleton model or does

not have perfect asymptotic accuracy. Take the competing model θ′ be the true model,

with Ωθ′ = ω∗ and qθ
′
(·|a, ω∗) = q∗(·|a) for all a ∈ A. Then the min-likelihood ratio is

λmin
t =

∏t
τ=0 q

∗(yτ |aτ )
minω∈Ωθ

∏t
τ=0 q

θ(yτ |aτ , ω)
.

Taking the logarithm of both sides,

lnλmin
t = max

ω∈Ωθ

[
t∑

τ=1

(
ln q∗(yτ |aτ )− ln qθ(yτ |aτ , ω)

)]
.

For every ω ∈ Ωθ, define A−(ω) := {a ∈ A : qθ(·|a, ω) ̸= q∗(·|a)}. By the same

argument used in the proof of Lemma 1, for λmin
t to stay under α forever, every action

in A−(ω) must be played at most finite times for every ω ∈ Ωθ. This is only possible if

Â := A \ (∪ω∈ΩθA−(ω)) ̸= ∅. By definition, any a ∈ Â satisfies qθ(·|a, ω) ≡ q∗(·|a) for
all ω ∈ Ωθ. Since the no-trap condition holds, there cannot be distinct ω, ω′ ∈ Ωθ such

that qθ(·|a, ω) ≡ qθ(·|a, ω′) ≡ q∗(·|a) for any a. Therefore, Ωθ must be a singleton, say

{ω̂}, in which case Cθ = ∅. It follows that the agent’s belief within model θ does not

change over time, and she takes the same action under θ, which must lie in A−(ω̂). As

a result, λmin
t eventually exceeds α almost surely, contradicting the assumption that θ

is globally robust.

Next, I prove the “if” direction. Suppose that θ is a singleton model and Ωθ = Cθ =

{ω̂}. I now show that this model is globally robust. First, conditional on the agent not

switching away from θ, the agent’s belief πθ0 = 1ω̂ stays unchanged, so she must take

the same action, say â. By definition, qθ(·|â, ω̂) = q∗(·|â). The min-likelihood ratio is

then given by

λmin
t =

minω′∈Ωθ′
∏t

τ=0 q
θ(yτ |aτ , ω′)∏t

τ=0 q
∗(yτ |aτ )

= min
ω′∈Ωθ′

∏t
τ=0 q

θ(yτ |aτ , ω′)∏t
τ=0 q

∗(yτ |aτ )
.

This is a supermartingale which, by Ville’s maximal inequality, stays under α with

positive probability. Therefore, model θ persists against any competing model θ′ and

is thus globally robust.
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F.3 Multiple Competing Models

Let Θ′ ⊆ Θ denote the set of competing models that the agent considers simultaneously,

and define Θ† := Θ′ ∪ {θ} as the full set of models considered, including the initial

model θ. I assume that Θ′ is finite, containing at most K ≥ 1 distinct models. At the

beginning of each period, the agent compares her current model to all alternatives in Θ†

and switches to the most plausible one if it fits the data sufficiently better. Specifically,

the agent calculates Bayes factors for each model in Θ† against the model used just

now, represented by λt := (λθ
′
t )θ′∈Θ† , where λθ

′
t = ℓt(θ

′)/ℓt(mt). The agent switches

if maxθ′∈Θ† λθ
′
t > α, adopting the model with the highest Bayes factor. Model θ is

globally robust at prior πθ0 if it persists against every Θ′ ⊆ Θ of size no larger than K

at πθ0 and each corresponding vector of priors πΘ′
0 . The definition of local robustness is

modified similarly.

Below is an example where the number of competing models K exceeds 1 + α, and

the agent eventually switches away from the true model to one of the misspecified

models and then stops switching with probability 1.

Example 5 (Overfitting). Consider an agent who repeatedly chooses between two ac-

tions, A = {a1, a2}. The true DGP prescribes a uniform distribution over K outcomes

Y = {1, ..., K} for both actions. The agent incurs a loss of −K for the outcome y = 1

while receiving a payoff of 0 from all other outcomes. The agent pays an additional

cost c > 0 for playing a1 and no cost if she plays a2. Assuming that the agent’s initial

model θ is the true model θ∗, she optimally plays a2 in the first period to avoid the

cost. Suppose the agent evaluates K competing models that I describe below. Each

model θk ∈ {θ1, ..., θK} has a single parameter ωk. When a1 is played, model θk agrees

with θ, correctly predicting a uniform outcome distribution. When a2 is played, model

θk diverges from θ. Specifically, for any k > 1, θk predicts

qθ
k

(y|a2, ωk) =


1− 1

K
− (K − 1)η if y = k,

1
K
+ η if y = 1,

η if y ∈ Y \ {1, k},

where η is a small positive constant. When k = 1, qθ
k
(·|a2, ωk) is given by

qθ
1

(y|a2, ω1) =

1− (K − 1)η if y = 1,

η if y ∈ Y \ {1}.
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Note that model θk predicts that when a2 is played, the outcome k is drawn with

probability near 1. Given there is one such model for every possible outcome, the

agent must switch to one of these competing models upon the first outcome realization,

provided that η is sufficiently small.. In particular, if the realized outcome is k, the

agent immediately switches to model θk when

ℓ0(θ
k)

ℓ0(θ)
=

1− 1
K
− (K − 1)η

1
K

> α.

Note that such η exists as K > α + 1. Furthermore, since playing a2 leads to the

outcome y = 1 with probability larger than 1/K under every competing model, once

the switch occurs, the agent finds it optimal to play a1 to avoid the loss associated with

outcome 1 when c is sufficiently small. However, since all models yield the same correct

predictions under a1, the Bayes factors λt remain constant thereafter. Hence, despite

that the agent starts with the true model, the agent becomes permanently trapped

with a misspecified model and chooses a suboptimal action.

Next, I show that if α > K, perfect asymptotic accuracy is still both sufficient and

necessary for global robustness, given prior flexibility.

Theorem 6. Suppose that the agent considers at most K competing models and that

α > K. Model θ ∈ Θ is locally and globally robust for at least one prior if and only if

there exists a p-absorbing SCE under θ, i.e., Cθ ̸= ∅.

Proof. It suffices to show that when α > K, a model θ is globally robust for at least

one full-support prior if θ admits a p-absorbing SCE. Without loss of generality, take

any Θ′ = {θ1, ..., θK} ⊆ Θ and define for each k ∈ {1, ..., K} a process {Skt }t as follows,

Skt =

∑
ω′∈Ωθk π

θk

0 (ω′)
∏t

τ=0 q
θk(yτ |aτ , ω′)∏t

τ=0 q
∗(yτ |aτ )

.

Then for any η ∈ (1, α), by Ville’s maximal inequality we have

PD(Skt ≤ η,∀t ≥ 0) ≥ 1− EPDSk0
η

= 1− 1

η
.
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Hence, when η is sufficiently close to α,

PD(Skt ≤ η,∀t ≥ 0,∀k ∈ {1, ..., K})

≥ 1−
K∑
k=1

PD(Skt > η for some t ≥ 0)

≥ 1− K

η
> 0.

The rest of the argument is similar to Step 1 of the proof of Theorem 1 in Appendix B.2.

F.4 Forward-Looking Agent

To formally introduce a forward-looking agent within each model, consider an agent

who assumes that she will continue using her current model mt and maximizes the

expected discounted sum of payoffs under it. The optimal policy f θ is a selection from

the correspondence Aθ : ∆Ωθ ⇒ A, which solves the following dynamic programming

problem,

U θ
(
πθt
)
= max

a∈A

∑
ω∈Ωθ

πθt (ω)

∫
y∈Y

[
u (a, y) + δU θ

(
Bθ

(
a, y, πθt

))]
qθ (y|a, ω) v (dy) , (9)

where δ ∈ (0, 1) is the discount factor.

Theorems 1 to 3 go through without changes as their proofs do not require the

assumption that the agent is fully myopic (see the remark in the first paragraph of

Appendix B). However, since experimentation motives make p-absorbingness harder

to achieve, I provide stronger sufficient conditions in Lemma 10. In particular, any

uniformly quasi-strict SCE is p-absorbing. An SCE σ with supporting belief π is

uniformly quasi-strict if supp (σ) = AθM (π) for every belief π ∈ ∆Ωθ (σ).

Lemma 10. Suppose a θ-modeler has discount factor δ ∈ (0, 1). Suppose σ is a

uniformly quasi-strict SCE with supporting belief π̂, then for any γ ∈ (0, 1), there

exists ϵ > 0 such that starting from any prior πθ0 ∈ Bϵ(π̂), the probability that the

θ-modeler always plays actions in supp(σ) for all periods is strictly larger than γ.

Proof. Since σ is uniformly quasi-strict with supporting belief π̂, supp (σ) contains all

actions that can be myopically optimal for any degenerate belief δω at ω ∈ supp (π̂).

This implies that other actions have no experimentation value at π̂ and supp (σ) is
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also dynamically optimal against π̂. Further, since Aθ is upper hemicontinuous (by

Lemma 6), there exists ϵ̃ > 0 small enough such that supp (σ) = Aθ (π̃) for all π̃ ∈
Bϵ̃ (π̂). The rest of the proof is identical to the proof of Lemma 5.

In the case of a fully forward-looking agent who anticipates that her model might

change in the future, the characterization of robust models is much more complicated

and is beyond the scope of this paper.

F.5 Infinite Parameter Space

Consider an extension of the framework introduced in Section 3: expand the model

universe Θ to include any model that consists of arbitrarily many—finite or infinite—of

DGPs that satisfy Assumption 2. Even though the competing model could be more

complex, perfect asymptotic accuracy remains a sufficient and necessary condition for

any model θ to be globally and locally robust for at least one full-support prior. That is,

Theorem 1 remains valid. However, if θ has infinitely many predictions, a full-support

prior πθ0 ∈ ∆Ωθ may not assign positive probability mass to Cθ, which is needed for local

robustness at πθ0. Nevertheless, Theorem 2 still holds if we replace statement (ii) with

the following: model θ is locally robust at prior πθ0 if and only if πθ0(C
θ) > 0. Finally,

Theorem 2(i) and Theorem 3 remain unchanged since πθ0(C
θ) ≥ 1/α and Cθ = Ωθ

already imply this condition.

F.6 Alternative Persistence Definitions

The persistence definition in Section 3 requires that if the agent initially adopts a

model, she will eventually settle on it with positive probability. This definition has a

natural interpretation and helps predict whether a particular bias can persist stably in

a large population. By relaxing or strengthening parts of this definition, we alternative

formulations that are also worth exploring.

Almost sure eventual adoption. One possible modification strengthens persistence

by requiring that the model is eventually adopted almost surely. However, this makes

both global and local robustness impossible. In fact, for any model θ, we can construct

a nearby competing model θ′ that replaces θ permanently with positive probability.

The key idea is that the agent may encounter a sequence of outcome realizations

better explained by θ′, leading to a stable switch. Since the two models’ predictions

are initially close and converge in the limit, the agent may not switch back. Thus,

almost-sure persistence is too restrictive to be useful.
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To see this, construct θ′ to include all DGPs in θ plus one additional DGP that differs

from all other DGPs for all actions. That is, let Ωθ′ = Ωθ ∪ {ω̂}, where qθ′(·|a, ω) =
qθ(·|a, ω) for shared parameters, and qθ

′
(·|a, ω̂) ̸= qθ(·|a, ω) for all ω ∈ Ωθ and all a ∈ A.

Setting the prior πθ
′

0 to be proportional to πθ0 for shared parameters, the Bayes factor

λt is bounded below by πθ
′

0 (Ω
θ). Since ω̂ makes distinct predictions from θ, there is a

positive probability that the agent finds θ′ sufficiently compelling to switch and never

returns if πθ
′

0 (Ω
θ) > 1/α, which holds if α > 1 and πθ

′
0 (Ω

θ) is close to 1.

No switch. The current persistence definition allows back-and-forth switching before

the agent eventually settles on a model. A stricter definition would require the agent

to never switch once adopting a model. The main results remain valid under this

stricter condition. Intuitively, for the results to change, some initial models must

require back-and-forth switching to be persistent. However, in Theorem 1, the prior can

be concentrated around a p-absorbing SCE, ensuring the agent never needs to switch

away from an asymptotically accurate model. In Theorem 2, the no-trap condition

guarantees that the agent can draw outcomes and reach p-absorbing equilibria from

any qualified prior without needing temporary switches.
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