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This paper studies the long-term interaction between two overconfident agents who 
choose how much effort to exert while learning about their environment. Overconfidence 
causes agents to underestimate either a common fundamental, such as the underlying 
quality of their project, or their counterpart’s ability, to justify their worse-than-expected 
performance. We show that in many settings, agents create informational externalities for 
each other. When informational externalities are positive, the agents’ learning processes 
are mutually-reinforcing: one agent best responding to his own overconfidence causes 
the other agent to reach a more distorted belief and take more extreme actions, 
generating a positive feedback loop. The opposite pattern, mutually-limiting learning, 
arises when informational externalities are negative. We also show that in our multi-agent 
environment, overconfidence can lead to Pareto improvement in welfare. Finally, we prove 
that under certain conditions, agents’ beliefs and effort choices converge to a steady state 
that is a Berk-Nash equilibrium.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Overconfidence is a widely documented psychological bias. Experimental work demonstrates that individuals often re-
main overconfident even when confronted with evidence of their bias (Langer and Roth, 1975) by attributing successes to 
themselves and failures to others or the environment (Miller and Ross, 1975; Ross and Sicoly, 1979; Campbell and Sedikides, 
1999).

Both economists and psychologists have explored what happens when a single overconfident agent interacts with their 
environment. For example, Camerer and Lovallo (1999) find that the overconfidence of entrepreneurs can lead to excessive 
business entry and losses. Heidhues et al. (2018) discuss how a single overconfident agent learns about and ends up under-
estimating how talented his team is at performing joint tasks. As a result, the agent exerts sub-optimal effort, leading to a 
welfare loss. However, when working on a task within a team, all members of the team learn about the environment and 
adjust their effort simultaneously. In this paper, we consider what happens when multiple persistently overconfident agents 
interact with each other while learning and exerting effort. We show that this can change the learning dynamics as well as 
the welfare impact of overconfidence. In particular, we find that the direction of this change could depend on whether the 
object agents learn about is a common fundamental or their teammate’s ability.
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To ground this idea, consider two engineers who work together on a joint project. Both engineers are overconfident 
in their research skills. Suppose for now that neither engineer knows the underlying quality of the project assigned by 
their supervisor and thus both learn about this quality over time by working on the project and receiving evaluations for 
their periodic joint progress. Both share knowledge and experience gained from reading articles or testing out different 
methods, so the joint output depends on both engineers’ efforts and abilities as well as the project’s underlying quality. Our 
model predicts that the two engineers will both attribute more of the research output to their own ability than is actually 
warranted, thus underestimating the project’s quality. Each engineer’s misperception of the project’s quality will distort his 
own choice of effort. Depending on whether the return to effort decreases or increases in the project’s quality, an engineer 
either shirks (because the return to effort on a worse idea is lower) or exerts more effort (to compensate for the project’s 
low quality and churn out a product nevertheless).

Fixing the second engineer’s effort, suppose the first engineer’s optimal effort increases as his belief about quality be-
comes lower to compensate for the low quality. We show that the first engineer converges to a low belief about the project’s 
quality, in turn earning lower utility from his excessive effort. If we allow the second engineer to adjust his effort, the first 
engineer becomes considerably more disappointed by the new output which corresponds to the higher total effort. The ex-
tra disappointment exacerbates the drop in his inference about the project quality and encourages him to exert even more 
effort. If we also assume that efforts are complementary, then this leads to a feedback loop which causes effort to increase 
and inferences to decrease more than they would if only one engineer adjusted their effort. When the presence of a second 
engineer who simultaneously adjusts his effort makes the first engineer’s beliefs more extreme and vice versa, we call this 
channel mutually-reinforcing learning. However, unlike the single-engineer case, it is now possible that the extra effort leads 
to higher payoffs for both engineers due to the common-good nature of joint research efforts.

Now let’s entertain the other possibility that the underlying quality of the project is common knowledge but the en-
gineers are unsure of their coworker’s ability. As in the previous case, suppose that as the engineers’ belief in their 
counterpart’s ability drops, their optimal effort increases to compensate. Again, fixing the second engineer’s effort, the 
first engineer exerts excessive effort and has a low belief in the ability of the second engineer. In contrast with the previous 
case, now if the second engineer can adjust his effort, the first engineer becomes less disappointed by the new output. This 
makes the first engineer partially correct his underestimation of the second engineer’s ability. This is because the higher 
effort from the second engineer in turn decreases the marginal return to the first engineer’s research skill, thus lowering 
his unrealistically high expectations caused by overconfidence. If in addition efforts are substitutes, this creates a negative 
feedback loop which we describe as mutually-limiting learning.

We formalize this intuition in an infinite-horizon environment, where two agents, i and j, choose how much effort to 
exert in each period. Each agent’s payoff in a given period is the joint output minus their individual cost of effort. The 
output is determined by both agents’ efforts and abilities, as well as some common fundamental (such as the quality of 
the research idea in the above example). We assume that each agent has a degenerate belief about the value of their own 
ability and study the case where that point belief is higher than the true value of ability. Moreover, each agent starts with a 
non-degenerate prior about either the fundamental or the other’s ability and updates this belief over time. In each period, 
each agent chooses a level of effort to myopically maximize his payoff given the effort of the other agent and his belief.

As illustrated in the example, our two-agent model generates two key insights that are not present in the single-agent 
case. First, we find that agent j’s effort provides an informational externality by affecting agent i’s inference problem over 
the fundamental through two channels.1 The first channel is a direct one, a change in agent j’s effort changes the signal 
structure for agent i whenever the marginal product of agent i’s unknown variable or his ability is changed by agent j’s 
effort. The second channel takes effect when payoffs exhibit complementarity or substitutability between the two agents’ 
efforts. Complementarity or substitutability of efforts implies that a change in agent j’s effort causes a change in agent i’s 
effort, further altering agent i’s payoff distributions. Depending on whether the direct and indirect effects are (co)monotonic, 
informational externalities could be categorized as positive, negative, or ambiguous. We show that the agents’ learning 
processes are mutually-reinforcing when informational externalities are positive and mutually-limiting when informational 
externalities are negative. Interestingly, under natural assumptions, informational externalities can only be positive when 
agents learn about a common fundamental and can only be negative when agents learn about each other’s ability.

Second, in a single-agent model, the agent faces an individual decision-making problem and thus misspecification can 
only result in distorted inferences and suboptimal effort, generating worse payoffs. By contrast, we show that the effect of 
misspecification is not always negative when multiple agents interact. The idea is very simple: since individual optimization 
fails to be socially efficient due to payoff externalities, Pareto improvement can be obtained if the efforts are distorted 
slightly upwards by overconfidence.

We demonstrate the insights above by analyzing agents’ long-run beliefs and effort choices which form a Berk-Nash 
equilibrium (Esponda and Pouzo, 2016). We show that under certain conditions, agents converge to this equilibrium. Our 
proof augments the contraction argument in Heidhues et al. (2018) to accommodate the additional agent. For convergence to 
hold, we need agents’ informational externalities to be unambiguously positive or negative so that one agent’s optimization 
does not impede the other agent’s belief updating and leads to oscillation.

1 Murooka and Yamamoto (2021) also find that strategic interaction could give rise to informational externalities in misspecified learning problems. We 
became aware of their paper as we were completing this paper.
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Finally, we discuss how our insights extend to settings with underconfident agents. Due to an asymmetry in how the 
agents draw inferences, an opposite pattern emerges—positive informational externalities lead to mutually-limiting learning 
while negative informational externalities lead to mutually-reinforcing learning.

1.1. Related literature

This paper builds on the single-agent learning setting in Heidhues et al. (2018). They find that overconfidence leads 
to distorted beliefs and a reduction in welfare, which are both exacerbated as the agent re-optimizes his effort causing 
a self-defeating learning pattern. Augmenting their setting, we explore how multiple overconfident agents influence each 
others’ learning process. The presence of multiple agents gives rise to informational externalities and payoff gains relative 
to the single-agent environment as well as the correctly specified environment. In recent work, Murooka and Yamamoto 
(2021) identify similar informational externalities in a multi-agent setting. The key difference between the papers is that 
agents in Murooka and Yamamoto (2021) are overconfident about the same joint ability and only learn about a common 
fundamental, while in this paper, agents are overconfident in their own personal ability, allowing us to consider cases where 
agents learn specifically about one another. In their setting, mutually-limiting learning occurs only when the output function 
maps efforts asymmetrically into outputs; in contrast, mutually-limiting learning arises naturally in our setting when agents 
learn about each other’s ability, even if the output function is symmetric.

There is a growing literature that explores the implications of model misspecification on learning.2 Esponda and Pouzo 
(2016) propose the solution concept, Berk-Nash equilibrium, for such games with misspecification. In recent years, there 
has been substantial progress in showing the convergence of beliefs to the Berk-Nash equilibrium in general environments. 
Bohren and Hauser (2021) characterize conditions under which correct learning, incorrect learning, or cyclical learning 
arise in a binary-state learning environment. Heidhues et al. (2021) consider a class of single-agent learning problems 
where the agent’s posterior admits a one-dimensional summary statistic and find conditions under which the agent’s belief 
converges to a point mass with probability 1. Esponda et al. (2021) study a single-agent problem with finite actions, focusing 
on the dynamics of the frequency of actions and characterizing asymptotic outcomes as the solutions of a differential 
inclusion; Fudenberg et al. (2021) study a similar setting with finite actions, but obtain characterization based on a stronger 
assumption of uniform optimality of an action to any long-term beliefs. Frick et al. (2023) propose stronger conditions than 
Kullback-Leibler divergence dominance that establish convergence. They abstract from specifying actions and preferences 
and develop a more general setup only in terms of signals and states. This general formulation nests social learning problems 
as well as the single-agent active learning problem, but does not allow signals to depend endogenously on the subjective 
belief of a second agent through his action. Therefore, none of their techniques are directly applicable to our multi-agent 
model that assumes continuous actions and states. The contraction argument used in this paper and Heidhues et al. (2018)
rely on structural properties of the payoff functions.

In line with our findings, the literature on overconfidence suggests that this bias can be helpful or detrimental depending 
on the context. Camerer and Lovallo (1999) find that overconfidence leads to excessive business entry and high rates of 
new business failure. On the other hand, Gervais and Goldstein (2007) show that overconfidence can improve every team 
member’s welfare in a single-period compensation contract problem.

Finally, this paper relies on the assumption that agents tend to be persistently overconfident, which is well supported 
by the psychology literature on overconfidence.3 One illustration of this is the “better-than-average effect”, where a large 
majority of individuals believe themselves to be better than average at a specific skill. For example, Langer and Roth (1975)
find that when individuals guess a coin flip outcome, they attribute correct guesses to skill and incorrect guesses to bad 
luck, and thus believe that they are skilled at predicting coin flips in spite of a 50% success rate. In a job performance 
setting, Svenson (1981) finds that the vast majority of truck drivers he surveyed believed they were more skilled and safer 
at driving than the average driver surveyed. Benoît et al. (2015) find that people overplace themselves in quiz performance 
in a manner that cannot be explained by a model of rational expected utility maximization.

Several papers provide justifications for persistent overconfidence. Anderson et al. (2012) find that overconfident in-
dividuals are perceived as more competent which in turn leads to higher social status. This can reinforce feelings of 
overconfidence, despite contrary evidence. Though this channel provides insight into how individuals might initially de-
velop overconfidence, we do not introduce it into our model. Instead, we assume agents are already overconfident to focus 
on misperception’s effect on the learning process. Ba (2023) shows that overconfidence is persistent even when the decision-
maker is aware of potential model misspecification and considers competing models with varying levels of self-perception. 
Heifetz et al. (2007) demonstrate that overconfidence can arise in an evolutionary environment where agents in a game 
receive higher payoffs when they maximize objective functions predicated on higher ability than the agent possesses. This 

2 Papers that model the consequences of other types of misspecification include overestimating the informativeness of actions of other agents (Eyster 
and Rabin, 2010; Bohren, 2016; Gagnon-Bartsch and Rabin, 2017), taste projection (Gagnon-Bartsch, 2017), confirmation bias (Rabin and Schrag, 1999), 
gambler’s fallacy (He, 2022), misspecified beliefs about the type distribution (Frick et al., 2020), and misspecified prior beliefs (Nyarko, 1991; Fudenberg et 
al., 2017). All such models lead to inefficient long-run actions.

3 We focus on overconfidence in abilities. There are also studies finding that agents are overconfident in the precision of their beliefs (Moore and Healy, 
2008; Moore et al., 2015).
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mechanism is closely tied with our welfare results in Section 4.4, where agents’ overconfidence can be welfare improving 
because overconfidence mitigates a public good problem.

The remainder of this paper proceeds as follows. Section 2 describes the model and Section 3 defines the steady state of 
our learning dynamics—a Berk-Nash Equilibrium adapted to our non-stationary environment. Section 4 contains the main 
result of the paper, in which we explore the patterns of mutually-reinforcing and mutually-limiting learning in the equi-
librium, and analyze the welfare implications. Section 5 shows that in the presence of unambiguously positive or negative 
informational externalities, the two-agent learning process will converge to the Berk-Nash equilibrium. Section 6 provides 
extensions including allowing for underconfidence. Section 7 concludes.

2. Multi-agent learning environment

Environment There are two agents, indexed by i ∈ I := {1,2} and j �= i. In each period t ∈ {1,2, ...}, each agent i simultane-
ously chooses an effort level ei

t from a compact set [e, e] ⊂ R. Each agent obtains a common output qt that is determined 
by their efforts, ei

t and e j
t , their individual abilities, ai and a j , a common fundamental, φ, and random noise. We write this 

output as qt = Q (ei
t , e

j
t , ai, a j, φ) + εt , where εt is a zero-mean i.i.d. random variable drawn from some continuous distribu-

tion with a positive and log-concave density f with full support over R. The output function Q is deterministic and twice 
continuously differentiable, with its derivatives having polynomial growth in ai, a j and φ.4 Additionally, each agent i incurs 
an individual cost c(ei

t) > 0 that is strictly increasing in his own effort. All past outputs and efforts are publicly observable.

Learning with misspecification We denote the true values of the agents’ ability levels by Ai, A j ∈ (a, a) and the true 
common fundamental by � ∈ (�, �); they are deterministic variables that remain unchanged throughout. Agents are over-
confident in their own ability. In particular, agent i believes that his true ability is actually given by ãi ∈ (a, a) and ãi > Ai . 
Agents’ self-perceptions ãi and ã j are common knowledge. Agents realize that their counterpart may be subject to overcon-
fidence but fail to recognize their own overconfidence.5

We simultaneously consider two different learning problems in which the agents are either learning about the common 
fundamental or learning about each other’s ability.6 The psychology literature documents self-serving attribution biases in 
both environments (Miller and Ross, 1975). For a unified analysis, let ψ i denote the object that agent i tries to learn about 
from outputs and �i denote its true value.

Case 1. Learning about a common fundamental. The agents know each other’s true ability A1, A2 but are uncertain about 
the value of the fundamental �. We capture this assumption by specifying ψ i = φ for all i.

Case 2. Learning about each other. The agents know the true common fundamental but are unsure about the other agent’s 
true ability. Here, agents learn about different objects, ψ i = a j for all i and j �= i.

In both cases, the agents are aware of and accept the fact that their self-perception may be different from their coun-
terpart’s assessment of them. Due to overconfidence, the agents use a misspecified model to learn about the object ψ i . Let 
�i

t and π i
t denote the c.d.f. and p.d.f. of agent i’s posterior about the unknown ψ i at the end of period t . We assume that 

the prior �i
0 has finite moments and bounded strictly positive continuously density π i

0 with potentially unbounded support 
(ψ, ψ) ⊂R, which corresponds to (φ, φ) in Case 1 and (a, a) in Case 2. Note that this full-support assumption ensures that 
any mislearning is a result of overconfidence rather than misspecified priors. We make the following assumptions about the 
output function.

Assumption 1. For all i and j �= i: (i) Q ai := ∂ Q /∂ai and Q φ := ∂ Q /∂φ are strictly bounded and positive; (ii) the signs of Q eiai :=
∂2 Q /∂ei∂ai and Q eiψ i := ∂2 Q i/∂ei∂ψ i are different, Q i

eiψ i �= 0, and the signs do not vary with i; (iii) ∀ei, e j , there always exists 

φi ∈
(
φ,φ

)
and a j ∈ (a, a) such that Q

(
ei, e j, ãi, A j, φi

) = Q
(
ei, e j, Ai, A j,�

) = Q
(
ei, e j, ãi,a j,�

)
.

The first condition says that a higher ability and a larger fundamental positively influence the common output. The 
second condition guarantees both agents are optimizing and making inferences in a predictable direction. For example, 
consider the engineer who underestimates the quality of the project idea due to his overconfidence in his own ability (Case 
1). Note that ψ i = φ. Next, suppose Q eiφ > 0 and Q eiai ≤ 0. Then this agent should lower his effort in response to his 
lowered belief in the fundamental. If instead, both cross derivatives were positive, then more structure would be needed 
to determine how the agent should best respond.7 We also assume Q eiψ i �= 0 to rule out the uninteresting case where 
agents always exert the same effort. The assumption that the signs of cross derivatives do not change with i is without 

4 Log-concavity of f and polynomial growth of Q ensure beliefs and expected output have well defined moments following arbitrary histories.
5 For justification, consider experiments from Kennedy et al. (2013) where overconfident subjects maintained nearly consistent levels of overconfidence 

after learning others felt they overestimated their ability. They also remained overconfident after recognizing their peers were overconfident.
6 We do not consider the case where agents learn about both the common fundamental and each other’s ability simultaneously, since the agents’ 

subjective models would be under-identified.
7 Heidhues et al. (2018) also make this assumption. We discuss the role of this assumption in more detail at the end of Section 4.3.
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loss of generality.8 If Q is symmetric for agents i and j, then this assumption is automatically satisfied. The third condition 
guarantees that for any fixed action profile, agent i can always perfectly justify the distribution of the outputs by attaching 
probability 1 to an incorrect fundamental value or teammate ability level.

Actions The agents are myopic and maximize their payoff in the current period. Since the agents’ self-perceptions as well 
as the history of payoffs and efforts are public information, their posteriors 

{
π1

t−1,π
2
t−1

}
are common knowledge. Therefore, 

the agents can use iterated deletion of dominated strategies to determine their play. The following regularity assumption 
ensures that in each period, the induced game is dominance solvable (See Lemma 4).

Assumption 2. For all i and j �= i: (i) the return to effort is diminishing, Q eiei − c′′(ei) < 0 for all ei ; (ii) Q ei

(
e, e j, ãi,a j, φ

) −
c′(e) > 0 > Q ei

(
e, e j, ãi,a j, φ

)−c′(e) for all e j, a j, φ; (iii) the diminishing return dominates any complementarity or substitutability 
between efforts, |Q eiei − c′′(ei)| > |Q eie j |, with Q eie j ≥ 0 for all values or Q eie j ≤ 0 for all values.

In each period, agent i must form some belief over what action player j is going to play so he can maximize his own 
stage payoff. With dominance solvability it is clear how agent i forms his conjecture about agent j’s action; agent i employs 
iterated deletion of dominated strategies until he arrives at the uniquely rationalizable action profile and uses that to inform 
his play. All this requires is Assumption 2 and the common knowledge that both agents use their subjective models to make 
decisions. Moreover, this is equivalent to assuming that agents play a Nash equilibrium each period, which boils down to the 
following restriction: agents choose efforts 

{
e1

t , e2
t

}
, in which ei

t is myopically optimal against e j
t given belief π i

t−1. However, 
if we were to simply impose that the agents play the stage game Nash Equilibrium in each period, it would be unclear how 
each player formed the correct conjecture about what action the other player was going to take.

Contrasting with the assumption from Esponda and Pouzo (2016), where players assume they are in a stationary envi-
ronment, we model players to be a little more sophisticated so that they understand the underlying distribution of outputs 
depends on their counterpart’s actions and thus varies over time. The set of Berk-Nash equilibria we identify in Section 3, 
nevertheless, is the same as those identified by Esponda and Pouzo (2016) if players start with conjectures on each other’s 
actions that are correct in equilibrium. This is because the Berk-Nash equilibrium is a steady-state concept. By assuming 
common knowledge of non-stationarity, we have a more natural interpretation and a clearer picture of how agents form be-
liefs dynamically—it is hard to isolate how inferences are affected by overconfidence over time if agents are also misspecified 
about the game structure.

2.1. Examples

We present a few parametric examples that satisfy the assumptions in the paper. We will revisit the first two to illustrate 
our results in later sections.

Example 1. Consider two engineers who work on a joint project for a large firm. Each team member’s payoff depends on 
a common fundamental representing the quality of the project idea. They are both overconfident in their research ability 
and periodically split a bonus reliant on the project’s profitability to the firm. Each engineer also experiences a convex cost 
to exerting effort. For a concrete functional form, let Q

(
ei, e j,ai,a j, φ

) = φ
(
ei + e j + eie j + ai + a j

)
and ci(ei) = 1

2 κ(ei)2, 
where κ ≥ φ and φ > 0. The engineers’ expected bonus, Q , is increasing in their effort and ability as well as the quality 
of the project. In this example, the agents learn about the fundamental, φ, which governs the productivity of the project 
(ψ i = φ). Notice that engineer i’s effort and the fundamental are complements—a higher belief in the fundamental motivates 
a greater input of effort.9 The efforts of the engineers are also complements; as they share knowledge and experience gained 
from reading articles or testing out different methods their marginal productivity improves.

Example 2. Consider a modified version of the teamwork setting in the previous example, but now the engineers learn 
about each other (ψ i = a j). The engineers still experience the same convex effort cost. In each period, the engineers split a 
bonus and each gets Q (ei, e j, ai, a j, φ) = log(eiai + e ja j + φ). In this example, since the returns for the project are concave 
in the sum of the agent’s effort and abilities, agent i’s effort and his coworker’s unknown ability are substitutes—a higher 
belief in his coworker induces lower effort from agent i. In addition, the efforts of the agents are substitutes.

Example 3. The legislature passes a law that must be implemented by two federal agencies who work together to create a 
series of rules that enforce different aspects of the law.10 The two agencies learn about the underlying quality of the law, 

8 If sgn(Q ei ai ) �= sgn(Q e j a j ), we can change the orientation of e j and then our framework still applies.
9 This differs from the motivating example in the introduction where we assumed the common fundamental and effort were substitutes. Assuming 

complementarity here allows us to use a simpler functional form.
10 For instance consider two US agencies: the SEC and CFTC. Both agencies are tasked with regulating financial products. In the case of regulating financial 

swaps, the SEC writes rules pertaining to specific securities-based swaps while the CFTC writes the rules for all other types. The agencies have similar 
policy goals and often share information in order to create better and more consistent rules (Bils, 2020).
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φ, while dedicating effort ei towards writing each rule. Each agency is overconfident in its ability, ai , to write good rules. 
In each period, the output is given by Q (ei, e j, ai, a j, φ) = ai + a j + φ − L(φ − ei) − L(φ − e j) + λeie j and ci(ei) = 1

2 κ
(
ei

)2
, 

where λ > 0, κ > λ, and L is a positive, convex loss function with |L′| < 1. The agencies would like to match the time and 
resources they put towards writing rules to the underlying quality of the law, which is captured by the loss function L. The 
agency will pass better rules if they have a higher capacity to write quality rules (higher ai ) as well as if the underlying 
legislation is of high quality (higher φ), and will put more effort into writing rules (higher ei ) as the other agency works 
harder (higher e j ).

3. Steady state

Following the definition developed in Esponda and Pouzo (2016), we now define the Berk-Nash equilibrium for both 
Case 1 and Case 2. As will be shown in Section 5, the action process described earlier almost surely converges to a steady 
state that constitutes such an equilibrium. An equilibrium consists of strategies that are optimal given equilibrium beliefs 
which minimize the Kullback-Leibler (henceforth KL) divergence.11

Definition 1. A strategy profile e ∈ [e, e]2 is a pure-strategy Berk-Nash equilibrium if there exists a probability distribution 
π i ∈ � 

(
ψ,ψ

)
for each i such that:

(i) Effort ei is optimal given π i and e j . That is, in Case 1,

ei ∈ arg max
ei′∈[e,e]

Eπ i

[
Q

(
ei′, e j, ãi, A j,ψ i

)]
− c(ei′), (1)

and in Case 2,

ei ∈ arg max
ei′∈[e,e]

Eπ i

[
Q

(
ei′, e j, ãi,ψ i,�

)]
− c(ei′), (2)

(ii) For all ψ i ∈ suppπ i , we have ψ i ∈ arg min
ψ i′∈

(
ψ,ψ

) K i
(
e,ψ i′), where in Case 1,

K i
(

e,ψ i′) := E

[
log

f
(
q − Q

(
e, Ai, A j,�

))
f
(
q − Q

(
e, ãi, A j,ψ i′))

]
, (3)

and in Case 2,

K i
(

e,ψ i′) := E

[
log

f
(
q − Q

(
e, Ai, A j,�

))
f
(
q − Q

(
e, ãi,ψ i′,�

))
]

. (4)

The expectation is taken with respect to the true distribution of q = Q
(
e, Ai, A j,�

) + ε .

By strict concavity of the payoff function, we rule out mixed strategy equilibria. It is straightforward to see that if the 
learning process ever converges, the steady state must be a pure Berk-Nash equilibrium: intuitively, if efforts converge, then 
in the long run, an agent must converge to the beliefs that best fit the data. These will be the beliefs that minimize the KL 
divergence. Meanwhile, in the limit, the efforts must best respond to the limit beliefs as well as the opponent’s action. To 
characterize the equilibrium, let e∗ (

ã,ψ
) := (

e∗i
(
ã,ψ

)
, e∗ j

(
ã,ψ

))
denote the myopically optimal action profile where each 

agent i assigns probability 1 to ψ i . This is the Nash equilibrium of a one-shot game when we fix the beliefs in the unknown 
variable to a Dirac measure at ψ . It is straightforward to show its existence and uniqueness.

Lemma 1. Under Assumption 2, a unique action profile e∗ (
ã,ψ

)
exists, ∀ã, ψ .

Next, we define the gap function for each player to capture the discrepancy between the actual average output and agent 
i’s expected average output. For both i ∈ I , define gi : [e, e]2 × (ψ, ψ) →R such that in Case 1,

gi
(

e,ψ i
)

:= Q
(

e, Ai, A j,�
)

− Q
(

e, ãi, A j,ψ i
)

, (5)

and in Case 2,

11 Kullback-Leibler divergence, also known as relative entropy, is a common measure of distance between two distributions. By Gibb’s inequality, the 
Kullback-Leibler divergence is weakly positive and equal to zero if and only if the two distributions being compared coincide almost everywhere.
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gi
(

e,ψ i
)

:= Q
(

e, Ai, A j,�
)

− Q
(

e, ãi,ψ i,�
)

. (6)

We will call g (e,ψ) := (
gi

(
e,ψ i

)
, g j

(
e,ψ j

)) = 0 the no-gap condition. Intuitively, fixing efforts e, the solution to the no-gap 
condition, ψ , is the value of the unknown variable that agent i finds most likely since it perfectly matches the distribution of 
outputs. The no-gap condition exactly characterizes the point where the weighted Kullback-Leibler divergence is minimized 
to 0 for both agents. We thus obtain the following lemma.

Lemma 2. Under Assumptions 1 and 2, there exists at least one Berk-Nash equilibrium. Moreover, each equilibrium e∞ is associated 
with a supporting belief that is a Dirac measure at ψ∞ , which satisfies the following:

(i) Optimality: e∞ = e∗ (
ã,ψ∞

)
.

(ii) Consistency: g
(
e∞,ψ∞

) = 0.

To streamline exposition, we sometimes denote the equilibrium beliefs and efforts as functions of the self-perception 
levels, such as ψ∞

(
ã
)

and e∞
(
ã
)
.

In order to establish global convergence, we follow Heidhues et al. (2018) who assume there is a unique Berk-Nash 
equilibrium. Note that the uniqueness of e∗ (

ã,ψ
)

is insufficient since there could be multiple equilibrium beliefs, supporting 
different optimal action profiles.

Assumption 3. There exists a unique Berk-Nash equilibrium.

Lemma 3 provides sufficient conditions on the fundamentals of the stage game for Assumption 3. Specifically, uniqueness 
is guaranteed if agents are not too misspecified. Section 6 considers how our insights extend to scenarios where Assump-
tion 3 fails.

Lemma 3. Suppose Assumptions 1 and 2 hold. There exist �1, �2 > 0, such that whenever 
∣∣ãi − Ai

∣∣ < �i, ∀i = 1, 2, there is a unique 
Berk-Nash equilibrium.

4. Main results

In this section, we explore the properties of the steady state, in particular how the discrepancy between ψ∞ and the 
true value of the unknown variable � varies in settings with or without strategic interaction between agents. We first define 
the concept of informational externalities, then demonstrate how they can cause different learning patterns in Cases 1 and 
2. Finally, we examine the welfare implications.

4.1. Informational externality

Payoff externalities are a well-known concept which describes the direct influence of agent j’ actions on agent i’s utility, 
often discussed in the context of a common good problem. We find that agent j’s action may also have an impact on agent 
i’s beliefs, formalized below as informational externalities. Notably, the notion of informational externality is distinct from 
informative actions in social learning environments. The agents do not obtain any additional information from each other’s 
effort choices; instead, the agents face a signal structure that varies as efforts change.

Definition 2. We say agent j’s action creates an informational externality for agent i when the solution ψ i to the no-gap 
condition gi(e, ψ i) = 0 depends on e j , or equivalently, at least one of Q e jai , Q e jψ i , or Q eie j is nonzero.

Agent j’s action affects agent i’s inference about ψ i when the conditions in Definition 2 are met. The informational 
externality works both directly and indirectly. To understand the direct channel, first notice that a different e j changes 
the underlying distribution of the outputs, consequently distorting agent i’s belief updating process. This may push agent 
i’s belief upwards or downwards, which critically depends on the signs of Q e jai and Q e jψ i . Meanwhile, the indirect effect 
operates through agent i’s optimization process. When Q eie j �= 0, a different e j changes the marginal product of ei and 
thus the optimal choice of the latter. This feeds back to the direct channel by once again changing the underlying output 
distribution. Informational externalities, just like payoff externalities, can be categorized as positive or negative based on 
the signs of the aforementioned cross derivatives.

Definition 3. The informational externality of agent j’s action over i is positive if Q eie j ≥ 0, sgn(Q eiψ i ) = sgn(Q e jψ i ), and 
sgn(Q eiai ) = sgn(Q e jai ); it is negative if Q eie j ≤ 0, sgn(Q eiψ i ) �= sgn(Q e jψ i ), and sgn(Q eiai ) �= sgn(Q e jai ); otherwise, it is 
neither positive or negative.
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The direction of an informational externality captures whether e j and ei exert the same effect over i’s inference about 
ψ i . It is easier to understand this technical definition in terms of complementarity or substitutability between efforts and 
through the no-gap condition. When agent j’s action creates a positive informational externality, the agents’ efforts are 
complements. Furthermore, the parameter value ψ i that solves gi

(
e,ψ i

) = 0 is either both increasing or both decreasing in 
ei and e j . In sum, these observations imply that the efforts affect agent i’s belief in the same direction and are mutually-
reinforcing. By contrast, the negative informational externality of agent j amounts to substitutable efforts with opposite 
influences on agent i’s belief.

Definition 3 distinguishes the informational externality imposed by agent j’s action over i from the one imposed by 
agent i’s action over j. Nevertheless, with the assumption that both agents react to overconfidence in the same direction 
(Assumption 1), the informational externalities between the two agents must point in the same direction. We now show 
that efforts create positive informational externalities in Example 1 and negative informational externalities in Example 2.

Example 1 (cont.). Recall that engineers are learning about the productivity of the project (ψ i = φ), with an output function 
given by Q (ei, e j, ai, a j, φ) = φ(ei + e j + eie j + ai + a j). Simple calculations establish that Q eie j > 0, Q eiψ i = Q eiφ > 0, 
Q e jψ i = Q e jφ > 0, and Q eiai = Q e jai = 0. Therefore, the engineers exert positive informational externalities over one another.

Example 2 (cont.). In contrast, engineers in this example learn about one another’s ability (ψ i = a j), with an output function 
given by Q (ei, e j, ai, a j, φ) = log(eiai + e ja j + φ). Simple calculations tell us that Q ei e j < 0, Q eiψ i = Q eia j < 0, Q e jψ i =
Q e ja j > 0, Q eiai > 0, Q e jai < 0. Therefore, the engineers exert negative informational externalities over one another.

More generally, in Case 1, where agents learn about a common fundamental, they impose positive informational exter-
nalities if and only if efforts are complements; in addition, the agents cannot exhibit negative informational externalities on 
one another. Since overconfidence distorts agent i’s and j’s optimal effort choices in the same direction, the sign of Q eiφ

does not vary with i. It then follows from ψ i = φ that the sign of Q eiψ i must be aligned with Q e jψ i , ruling out negative 
informational externalities.

In Case 2, however, we observe the opposite. When agents learn about one another, agents impose negative informational 
externalities if and only if efforts are substitutes; in addition, agents cannot exhibit positive informational externalities. Since 
we require overconfidence and the resulting underestimation of the unknown to affect agent j’s optimal effort in the same 
direction for both agents, Q e ja j and Q eiai have the same sign. By Assumption 1, the sign of Q e ja j must disagree with the 
sign of Q e jψ j , or equivalently, the sign of Q e jai .12 Therefore, sgn(Q eiai ) �= sgn(Q e jai ), which rules out positive informational 
externalities.

4.2. Mutually-reinforcing learning

We consider the following question: how do the agents mutually influence their beliefs in the unknown variable through 
interactive learning and optimization? Heidhues et al. (2018) show that a single agent’s learning is self-defeating in the 
sense that allowing an overconfident agent to adjust his own actions results in a more extreme belief about the unknown 
variable. This encourages more extreme actions and leads to even lower outputs. We first show that the presence of a 
second actively-optimizing agent reinforces this pattern when there are positive informational externalities.

Consider a special learning environment in which we fix agent j’s action at e j
S := e j∞ (A), i.e. the effort choice that best 

responds to correct self-perceptions, but allow agent i to optimize his action in each period. Maintaining the assumption 
that there exists a unique steady-state, denote the steady-state inferences as ψ S =

(
ψ i

S ,ψ
j
S

)
and actions as e S =

(
ei

S , e j
S

)
.13

We now compare this steady state with 
(
e∞,ψ∞

)
, i.e. the steady state when we allow both agents to adjust actions. The 

following proposition shows that when agents create positive informational externalities, the steady-state underestimation 
always becomes more severe as more agents actively participate in action optimization. We describe such learning processes 
as mutually-reinforcing.

Proposition 1. Suppose Assumptions 1 to 3 hold and agent j’s action has a positive informational externality over agent i. Then both 
agents’ underestimation of their unknown variables ψ i gets reinforced when agent j is free to optimize compared to when agent j’s 
action is fixed at the level e j

S , i.e. ψ∞
(
ã
)
< ψ S < �.

The message conveyed by Proposition 1 is twofold. First, a self-defeating pattern emerges. Agent j underestimates the 
unknown variable more when he is allowed to optimize, i.e. ψ j∞

(
ã
)
< ψ

j
S < � j . More importantly, a mutually-reinforcing 

pattern can be observed by noting that ψ i∞
(
ã
)
< ψ i

S < �i , which means agent i’s inference also becomes more extreme 

12 In Section 4.3, we discuss the role of this assumption and whether relaxing it could lead to different predictions.
13 We can ensure the uniqueness of the steady state with similar sufficient conditions to those in Lemma 3.
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Fig. 1. Mutually-reinforcing learning. The left panel shows how allowing agent i to change her action induces a lower inference for agent i, with e j fixed at 
e j

S , and the right panel shows how agent i gets an even lower inference when agent j is also allowed to revise actions. The black straight line depicts the 
optimal action given a belief ψ i , while the blue curve describes the belief ψ i derived from the no-gap condition gi = 0 with ei and e j given. In the right 
panel, the two curves shift in the directions of the red arrows, capturing the effect of a changing e j . (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

when agent j can freely change actions. Hence, even if only one agent was to fix his action at the level that best responds 
to correct self-perceptions, both agents would understand the environment better.14

To illustrate the mechanism, we describe the learning dynamics heuristically for Case 1 with complementary efforts. For 
this purpose, we assume Q eiψ i > 0 (that is, Q eiφ > 0) and Q eiai ≤ 0 for both i in the illustration. Note that Example 1

satisfies this assumption. When agent i holds a degenerate belief at ψ i and his coworker’s effort is fixed at e j , agent i
optimally chooses an optimal level of effort e∗i which increases in both ψ i and e j . We can plot this optimal action function 
in the ei − ψ i domain (see Fig. 1). In addition, solving the no-gap equation gi(e, ψ i) = 0 yields the inference formation
function, which is the increasing blue curve we plot in the figure.

Fixing agent j’s effort at e j
S , as agent i starts to make inferences and optimize from the point plotted in the left panel of 

Fig. 1, agent i scales down his effort because he underestimates the common fundamental φ. This decrease in effort results 
in lower output in the following period, resulting in an even lower belief from agent i. Eventually, agent i reaches the belief 
ψ i

S , lower than the belief he started with. Suppose now agent j is also given the chance to optimize; the dynamics change 
dramatically. Since both agents have the tendency to scale down their effort and the output function admits complementar-
ity between efforts. Agent i now exerts lower effort than he did when his coworker was constrained to play a fixed higher 
action. In the right panel of Fig. 1, this is captured by a downward shift of the optimal action curve. Next, the decrease 
in agent j’s effort leads to a larger negative gap between the true and expected outputs. To see this, note that positive 
informational externalities and our assumptions imply

∂ gi(e,ψ i)

∂e j
= Q e j (e, Ai, A j,�) − Q e j (e, ãi, A j,ψ i) > 0. (7)

Hence, the evaluation of the common fundamental by agent i experiences a larger decline, i.e. the belief formation curve for 
agent i shifts to the left. To understand this, note that the common fundamental φ and the teammate’s effort e j are com-
plements, so the marginal return on φ decreases in response to a lower e j (similarly the marginal return on his own ability, 
ai , weakly increases). Hence, agent i believes the fundamental has to be much worse to justify his own underperformance. 
The same process repeats until both agents reach the steady state with action ei∞ and belief ψ i∞ . These steady-state values 
may be much more extreme than the initial action and belief values of ei

S and ψ i
S .

We now examine mutually-reinforcing learning from another perspective. Given that the presence of an actively-
optimizing second agent reinforces one agent’s mislearning, it is reasonable to expect that mislearning becomes more severe 
when the second agent is more biased. Proposition 2 confirms this intuition. As one or both agents become more overcon-

14 We choose e j
S = e j∞ (A) for ease of interpretation, but it is worth noting that Proposition 1 holds for more general choices of e j

S . Specifically, if Q eiψ i > 0, 
then it holds for all e j

S > e j∞
(
ã
)
; if instead Q eiψ i < 0, then it holds for all e j

S < e j∞
(
ã
)
. In either scenario, the condition ensures that e j

S moves away from 
e j∞

(
ã
)

in the direction of e j∞ (A).
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Fig. 2. Mutually-limiting learning. The left panel shows the steady state with e j fixed at e j
S , and the right panel shows how agent i gets a relatively higher 

inference when agent j is also allowed to revise actions.

fident, i.e. increase their self-perceptions, positive informational externalities imply that each agent has a worse evaluation 
of the unknown variable.

Proposition 2. Suppose Assumptions 1 to 3 hold and there exist positive informational externalities between the agents. When any of 
the agents is more overconfident, both agents’ underestimation of their unknown variable ψ i is more severe. That is, let ã, ̃a′ ∈ (

a,a
)2

and ã > ã′
> A, then ψ∞

(
ã
)
< ψ∞

(
ã′)

< �.

The pattern of mutually-reinforcing learning generates novel policy implications. First, in many interesting economic 
problems where there are often multiple agents interacting with each other, even a slight bias of overconfidence can be 
magnified to induce a nontrivial discrepancy between agents’ beliefs and the truth, thereby driving agents’ actions far 
away from optimal. Second, effective intervention can involve restricting the action choices of certain agents. Specifically, 
mutually-reinforcing learning implies that even intervention that only targets a subset of agents can have effects on every 
agent involved.

4.3. Mutually-limiting learning

When informational externalities are negative, agents’ learning processes become mutually-limiting; allowing another 
agent to freely optimize will make the original agent’s belief distortion less severe. Similarly, an increase in a second agent’s 
overconfidence will cause the first agent’s inferences to be closer to the true value of the unknown. In addition, we know 
from Section 4.1 that mutually-limiting learning arises when agents learn about each other (Case 2) and their efforts form 
substitutes.

Proposition 3. Suppose agent j’s action has a negative informational externality over agent i. The following are true:

(i) Agent i’s underestimation of the unknown variable is less severe when agent j is free to optimize than when agent j’s action is 
fixed at e j

S , i.e. ψ i
S < ψ i∞

(
ã
)
< �.

(ii) As agent j becomes more overconfident, agent i’s underestimation is smaller. That is, for any ã, ̃a′
> A such that ã j > ã′ j and 

ãi = ã′i , it is true that ψ i∞
(
ã′)

< ψ i∞
(
ã
)
< �.

We illustrate mutually-limiting learning in the context of Case 2 with substitutable efforts. To better compare with 
mutually-reinforcing learning, we continue to assume Q eiψ i > 0 (that is, Q eia j > 0) for both i. As before, both the optimal 
action curve and the inference formation curve are upward-sloping (see Fig. 2). However, when we allow agent j to freely 
optimize, the decrease in his effort moves the optimal effort curve upwards due to substitutability. Meanwhile, we now have 
a larger positive gap between the true and expected outputs since negative informational externalities and our assumptions 
imply

∂ gi(e,ψ i)

∂e j
= Q e j (e, Ai, A j,�) − Q e j (e, ãi, A j,ψ i) < 0. (8)
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Therefore, for each fixed ei , agent i now has a more favorable view of his teammate’s ability, i.e. the belief formation curve 
shifts to the right. This process eventually leads to action ei∞ and belief ψ i∞ , which are less extreme than their single-agent 
steady state counterparts.

In sum, our analysis shows that mutually-reinforcing learning may occur when agents learn about a common fundamen-
tal, but not when agents learn about each other’s ability. Conversely, mutually-limiting learning may arise in the latter case, 
but not in the former. How much does this observation hinge on the parametric conditions in Assumption 1, namely, Q eiai

has the same sign as Q e ja j but the opposite sign as Q eiψ i ? The former assumption is a mere normalization, but the latter 
is critical to our analysis. To see this, consider an alternative environment where sgn(Q eiai ) = sgn(Q eiψ i ) > 0. In this case, 
the optimal effort and inference formation curves could be non-monotone, and thus the effect of e j on i’s inference could 
also be non-monotone. Without imposing further structure over the functional form of Q , we cannot directly infer whether 
positive or negative informational externalities lead to mutually-reinforcing or mutually-limiting learning.

4.4. Welfare analysis

In this subsection, we analyze the welfare implications of overconfidence. We first discuss different channels impacting 
welfare and briefly analyze the single-agent case where overconfidence almost always leads to utility loss. We then move 
on to the two-agent case, where we derive two main insights. First, overconfidence is not always bad—it sometimes makes 
everyone better off, but only in a multi-agent environment; second, we can characterize the direction of the welfare change 
and how mutual learning reinforces or limits it by verifying a few conditions when the bias is small.

With self-perceptions ã, agent i’s objective average payoff could be written as

Q
(

e∞(ã), Ai, A j,�
)

− c(ei∞(ã)), (9)

where ei∞(ã) = e∗i
(
ã,ψ∞

(
ã
))

depend on ã j and ψ j∞
(
ã
)

only indirectly through agent j’s effort. It is then clear that any 
impact on agent i’s payoff comes from four different sources: (i) the distortion of ei due to overconfidence (the difference 
between ãi and Ai ); (ii) the distortion of ei due to false inference, (the discrepancy between ψ i and �i ); (iii) the distortion 
of ei due to the distortion of e j (complementarity/substitutability); (iv) the direct effect of e j on Q (payoff externality).

An easy observation is that the sum of effect (i) and effect (ii) can never be positive: misconceptions always impair the 
agent’s ability to choose the correct actions. With a single actively-optimizing agent, or in a case where output Q does not 
depend on e j , effects (iii) and (iv) are eliminated. As a result, in a single-agent setting, the agent always enjoys lower or 
equal utility. We summarize these observations below.

Claim 1. If the output function has the following form

Q
(

ei, e j,ai,a j, φ
)

= Q
(

ei,ai,a j, φ
)

, (10)

then an incorrect belief about ai makes the agent i weakly worse off in the steady state.

When there are multiple agents, sources (iii) and (iv) start to take effect. The presence of a second agent introduces a 
public-good problem since agents maximize their individual payoff without internalizing their positive payoff externality 
over one another. Therefore, we may see increases in both agents’ expected payoffs if the misspecification turns out to 
incentivize more (but not too much) effort. The extent to which overconfidence harms or benefits the agents depends on 
the properties of Q and how much ã deviates from A.

Proposition 4 partially characterizes the welfare impact of slight overconfidence. Since ei has been optimized, the change 
in agent i’s payoff will be dictated by the change of e j and the derivative of agent i’s payoff with respect to e j , while the 
effect of a distorted ei is secondary compared to agent j’s payoff externality. That is, effect (iv) dominates effects (i) to (iii), 
and the impact of overconfidence on welfare is mainly determined by changes in steady-state efforts. Notably, the welfare 
impact highly depends on the direction of informational externalities. Positive externalities allow for an easy determination 
of the welfare change from the primitives, while negative externalities make the welfare impact sensitive to differences in 
agents’ self-perceptions.

Proposition 4. Suppose Assumptions 1 to 3 hold and Q eiψ i > 0 for both i = 1, 2.

1. If agents impose positive informational externalities over each other, then there exists δ > 0 such that with self-perceptions ã ∈
B+

δ (A), both agents are worse off than when they are correctly specified.15

2. If agents impose negative informational externalities and efforts ei, e j are strict substitutes, then there exists δ > 0 such that with 
ãi = Ai, ̃a j ∈ B+

δ (A j), agent i is worse off while agent j is better off. If in addition Q is symmetric with respect to i and j, then 
there exists δ > 0 such that with ãi = ã j ∈ B+

δ (A j), both agents are worse off.

15 B+
δ (x) = {y : y > x,‖y − x‖ < δ} is defined as the upper right-hand area inside an x-centered circle with radius δ.
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Fig. 3. Welfare changes for Examples 1 and 2. Both panels display the welfare change for both agents under different levels of confidence, given that 
they have true ability A1 = A2 = 1. Purple areas represent confidence levels where both agents experience a decrease in welfare compared to the case 
with correctly specified beliefs. In green areas, player 1 is better off and player 2 is worse off, while in blue areas player 1 is worse off and player 2 is 
better off. Yellow areas denote cases where both players are better off. The payoff functions used are symmetric, and for the first panel, the functional 
form is Q (e1, e2, a1, a2, φ) = φ(e1 + e2 + e1e2 + a1 + a2), while for the second panel, it is Q (e1, e2, a1, a2, φ) = log(e1a1 + e2a2 + φ). The cost function is 
ci(ei) = 5(ei)2 for both panels, and � = 3 for both panels. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

If Q eiψ i < 0 for both i = 1, 2 then all payoffs change in opposite directions.

In a simple setting without informational externalities, agents’ effort choices depend only on their incorrect self-
perceptions and the resulting underestimation of the unknown variable. Mild overconfidence increases both agent’s efforts 
and corrects inefficiency if Q eiai ≥ 0 and Q eiψ i < 0, while the opposite pattern arises if Q eiai ≤ 0 and Q eiψ i > 0. Under 
positive informational externalities, the welfare change is larger in the same direction due to the mutually reinforced mis-
learning, leading to even more distorted effort. However, with negative informational externalities, if Q eiψ i > 0, the decrease 
in agent j’s effort creates upward pressure on agent i’s effort, counteracting the effect of agent i’s overconfidence. When 
the agents are equally overconfident and Q is symmetric across agents, the agents still exert lower effort—negative infor-
mational externalities only mitigate the welfare loss. If only agent j is overconfident, agent j works less but agent i works 
harder in response to a lower e j , which makes agent j better off and agent i worse off. Continuity ensures that this contin-
ues to hold when agent i is slightly overconfident. To illustrate, we compute the steady states and plot the direction of the 
welfare changes for Examples 1 and 2 in Fig. 3.

5. Convergence

In this section, we prove the convergence of the multi-agent learning processes to the unique Berk-Nash equilibrium 
under positive or negative informational externalities. We make use of a simple and intuitive lemma from Heidhues et al. 
(2018) stating that the support of any agent i’s long-term belief cannot contain an element ψ i if its implied distribution of 
outputs exhibits systematic mismatch with true distribution, i.e. the subjective expectation of outputs is consistently lower 
or higher than the objective expectation. We then use a contraction argument similar to theirs, exploiting the structural 
properties of the output function to eliminate a subset of actions given all possible beliefs, which in turn further rules out 
a subset of beliefs.

The added player brings non-trivial complications to the proof. To prevent one agent’s converging learning process from 
being disrupted by the other agent’s changing optimization, we have to impose additional structure to control for the agents’ 
mutual influence.

Assumption 4. The informational externalities are either both positive or both negative.

Now we are ready to state the theorem for the convergence of beliefs and actions for the two-agent environment.

Theorem 1. Suppose Assumptions 1 to 4 hold, then the agents’ actions almost surely converge to the Berk-Nash equilibrium actions, 
e∞ , and their beliefs almost surely converge in distribution to the Dirac measure at ψ∞ .

Fig. 1 offers some key insights to understand the convergence mechanism. In the left panel, our assumption dictates that 
the belief formation curve intersects with the optimal action curve at only one point, and the former must be steeper than 
326



C. Ba and A. Gindin Games and Economic Behavior 142 (2023) 315–338
Fig. 4. Mutual learning with underconfidence. The left panel shows the heuristic learning dynamics of an underconfident agent when informational external-
ities are positive. Steady-state inferences are lower than when agent j’s effort choice is fixed. The right panel shows a reverse pattern when informational 
externalities are negative.

the latter at this point. In a single-agent environment, iterated elimination of dominated actions and infeasible beliefs elim-
inates all but the crossing point—the Berk-Nash equilibrium profile. However, in the two-agent environment, agents’ mutual 
influence must be considered—the iterated elimination has to be run simultaneously for both agents. When informational 
externalities are neither positive nor negative, agent i’s inference, computed from the no-gap condition, and his optimal 
action can be non-monotone functions of e j . This possibly creates cycles in which agents have jointly oscillating actions and 
beliefs and fail to converge.

6. Extensions

6.1. Underconfidence

In this section, we explore the implications of underconfidence. The assumption that ã > A is important to the direction 
of mutual learning. As pointed out by Heidhues et al. (2018), with underconfidence, the single-agent learning process is self-
limiting. Similarly, in this model, with positive informational externalities the two-agent learning processes are mutually-
limiting. In contrast to the overconfidence case, assuming Q eiψ i > 0, the belief formation curve is downward sloping: as 
the agents exert more effort, the marginal return of the unknown variable increases, causing them to overestimate the 
unknown to a lesser extent. Therefore, allowing agent j to freely optimize induces a lower steady-state belief that is closer 
to the truth. Conversely, with negative informational externalities, allowing agent j to freely optimize causes agent i’s 
overestimation more severe. However, the reinforcement is not as severe as in the overconfidence case, because agent j’s 
effort change is constrained through self-limiting learning. Nevertheless, depending on the output function, the resulting 
belief of agent i could still be arbitrarily far away from the truth. This contrasts the single-agent underconfidence case, 
where misinference is self-correcting and limited.

These phenomena are illustrated by Fig. 4. Notably, since the belief formation curve and the optimal effort curve are not 
comonotone, the effect of adding another actively-optimizing agent on the first agent’s effort choice becomes ambiguous.

Additionally, there is no guarantee that the learning processes will converge. Assuming Q ei ψ i > 0 and Q eiai ≤ 0, as agents 
reach a lower belief in ψ , they react by exerting lower efforts, pushing up beliefs again. Nevertheless, the following theorem 
shows that underconfident agents also converge to the unique Berk-Nash equilibrium, as long as the agents are only mildly 
underconfident. This assumption ensures that the belief formation curve is steeper than the optimal action curve over the 
relevant region, enabling the use of the contraction argument.16 Note that Heidhues et al. (2018), working on a similar but 
single-agent setting, does not offer a convergence result for the underconfidence case.

Theorem 2. Suppose Assumptions 1 to 4 hold. When Ai − ãi is positive and sufficiently small for both i, the agents’ actions almost 
surely converge to the Berk-Nash equilibrium e∞ , and their beliefs almost surely converge in distribution to the Dirac measure at ψ∞ .

16 The mild underconfidence assumption is crucial for the use of the contraction argument, but it may not be a necessary condition for convergence. 
However, no existing results from the literature can be directly applied here.
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Fig. 5. Multiple Berk-Nash equilibria.

6.2. Multiple equilibria

The existence of multiple Berk-Nash equilibria does not affect our key message of mutually-reinforcing and mutually-
limiting learning, but it does pose difficulties in proving the convergence of the learning processes. In Fig. 5, we illustrate 
single-agent heuristic learning dynamics where two equilibria, 

(
ei

S ,ψ
i
S

)
and 

(
êi

S , ψ̂
i
S

)
, exist. The contraction argument fails 

because there can be no further elimination of actions when the lower and upper bounds of actions are given by êi
S and ei

S . 
Thus, this paper does not provide a proof of convergence for such settings. Our analysis of mutual learning patterns remains 
valid for the former equilibrium 

(
ei

S ,ψ
i
S

)
but not for the latter equilibrium 

(
êi

S , ψ̂
i
S

)
. Moreover, note that 

(
ei

S ,ψ
i
S

)
is a more 

plausible steady state since the agent’s belief tends to drift towards ψ i
S as he optimizes and updates while drifting away 

from ψ̂ i
S . In fact, it is possible to use the stochastic approximation tools from Esponda et al. (2021) to show convergence 

to 
(
ei

S ,ψ
i
S

)
in a finite-action environment—but unfortunately, their techniques do not directly apply to continuous-action 

settings like ours.17

6.3. Multiple agents

While our paper focuses on the two-player case, the results could be extended to an arbitrary number of agents. 
Mutually-reinforcing learning is exacerbated with more overconfident agents exerting positive informational externalities 
over each other. Moreover, the Pareto improvement when agents are slightly overconfident remains possible and poten-
tially gets stronger. However, the parametric assumptions become increasingly complex with more agents, as more cross 
derivatives are involved.

7. Conclusion

In this paper, we develop a two-agent learning model with overconfidence and introduce a new notion of informational 
externalities to capture how one agent’s actions affect the other agent’s inference. When positive informational externalities 
are present, we find a mutually-reinforcing learning pattern, where strategic interaction exacerbates the underestimation 
of the common fundamental and leads to more extreme actions. In contrast, negative informational externalities give rise 
to a mutually-limiting learning pattern. These patterns are absent in Heidhues et al. (2018), where only one agent actively 
learns and optimizes. Furthermore, our welfare implications starkly contrast with those of single-agent models as there can 
be Pareto improvements resulting from overconfidence, and mutually-reinforcing learning can amplify this welfare gain.

One possible future direction is to consider strategic manipulation of informational externalities. For example, in a set-
ting where agents are non-myopic and consider the impact of their actions over the other agent’s beliefs, agents may be 

17 The more recent paper Murooka and Yamamoto (2021) generalizes this characterization based on stochastic approximation to allow for continuous 
actions and also study a multi-agent learning problem under overconfidence, but like ours their convergence argument only applies when there is a unique 
steady state.
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incentivized to play actions that are suboptimal in the stage game in order to profitably distort the other player’s long-term 
beliefs.
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Appendix A. Preliminary lemmas

We first define notation that allows us to present a unified analysis for both Case 1 and Case 2. For i ∈ I , define Q i :
[e, e]2 × (a, a) × (ψ, ψ) such that

Q i(ei, e j,ai,ψ i) =
{

Q (ei, e j,ai, A j,ψ i) − c(ei) in Case 1,

Q (ei, e j,ai,ψ i,�) − c(ei) in Case 2.

Assumption 2 implies that Q i is strictly concave in ei . Then the no-gap condition introduced by Eqs. (5) and (6) could be 
written as the same condition: for all i ∈ I ,

gi(e,ψ i) = Q i(e, Ai,�i) − Q i(e, ãi,ψ i) = 0.

Define Gi (ψ) := gi
(
e∗ (

ã,ψ
)
,ψ i

)
and denote G (ψ) = (

Gi (ψ) , G j (ψ)
)
. This is the gap function when every agent ac-

tively optimizes according to a degenerate belief at ψ i . The Berk-Nash equilibrium belief satisfies Gi
(
ψ∞

) = 0, ∀i. Let 
κa ≥ max

{
Q a1 , Q a2

}
denote the upper bound on Q ai and 0 < κψ ≤ min

{
Q ψ1 , Q ψ2

}
denote the lower bound on Q ψ i

throughout.

Proof of Lemma 1. Suppose ei ∈ arg maxe∈[e,e] Q i
(
e, e j, ãi,ψ i

)
, then strict concavity implies that ei is unique for a fixed e j . 

Since Q i is twice continuously differentiable, Brouwer’s fixed-point theorem implies that a fixed point exists. Suppose there 
are two different fixed points 

(
ei, e j

)
and 

(
êi, ê j

)
, and without loss of generality ei > êi , then

Q i
ei

(
ei, e j, ãi,ψ i

)
= 0,∀i,

Q i
ei

(
êi, ê j, ãi,ψ i

)
= 0,∀i.

Assumption 2 then implies |e j − ê j| > |ei − êi |, ∀i, j �= i. Since it cannot hold for every i, we obtain a contradiction. �
Proof of Lemma 2. By Gibb’s inequality, the KL divergence is weakly positive and equates 0 if and only if the two distribu-
tions coincide almost everywhere. Therefore,

E

[
log

f
(
q − Q i

(
e, Ai,�i

))
f
(
q − Q i

(
e, ãi,ψ i

))
]

≥ 0,

where equality is obtained if and only if Q i
(
e, Ai,�i

) = Q i
(
e, ãi,ψ i

)
. Hence, the agent i’s equilibrium belief is a Dirac 

measure at such ψ i . Since the equilibrium must be optimal given the belief, it follows that 
(
e∗ (

ã,ψ∞
)
,ψ∞

)
is a pure-

strategy Berk-Nash equilibrium if and only if the no-gap conditions hold.
Existence: Since Q i

ei

(
e∗ (

ã,ψ
)
, ãi,ψ i

) = 0, ∀i and Q i is twice continuously differentiable, e∗i
(
ã,ψ

)
and e∗ j

(
ã,ψ

)
are 

continuous in ψ and ã. Moreover, for all e,
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Q i

(
e, ãi,� − κa

κψ

(
ãi − Ai

))

≤Q i
(

e, Ai,�i
)

+ κa

(
ãi − Ai

)
− κψ

κa

κψ

(
ãi − Ai

)

=Q i
(

e, Ai,�i
)

.

It follows that Gi
(
� − κa

κψ

(
ãi − Ai

)
,ψ j

)
≥ 0, ∀ψ j . Since Gi

(
�,ψ j

)
< 0, ∀ψ j , by the Brouwer’s fixed-point theorem, there 

exists at least one root of G over the domain of R2. By Assumption 1, the root is inside the support of the prior belief. �
Proof of Lemma 3. By the implicit function theorem, ∂e∗

i

(
ã,ψ

)
/∂ψk is a continuous function of ψ and ã, ∀i, k. Thus,

∂Gi (ψ)

∂ψk
=Q i

ei

(
e∗ (

ã,ψ
)
, Ai,�i

) ∂e∗i
(
ã,ψ

)
∂ψk

+ Q i
e j

(
e∗ (

ã,ψ
)
, Ai,�i

) ∂e∗ j
(
ã,ψ

)
∂ψk

− Q i
ei

(
e∗ (

ã,ψ
)
, ãi,ψ i

) ∂e∗i
(
ã,ψ

)
∂ψk

− Q i
e j

(
e∗ (

ã,ψ
)
, ãi,ψ i

) ∂e∗ j
(
ã,ψ

)
∂ψk

− 1i (k) · Q i
ψ i

(
e∗ (

ã,ψ
)
, ãi,ψ i

)
is a continuous function of ψ and ã, ∀i, where 1i (k) = 1 if i = k and 0 otherwise. When the derivatives are evaluated at 
ãi = Ai and ψ i = �i ,

∂Gi (ψ)

∂ψ i
|(ãi ,ψ i

)=(
Ai ,�i

) = −Q i
ψ i

(
e∗ (ψ) , Ai,�i

)
< 0,

∂Gi (ψ)

∂ψ j
|(ãi ,ψ i

)=(
Ai ,�i

) = 0.

Continuity then implies that there exist �i > 0, i = 1, 2, such that for any ai ∈ (
Ai, Ai + �i

)
and for any ψ i ∈[

�i − κa
κψ

∣∣ãi − Ai
∣∣ ,�i

]
⊂

(
ψ,ψ

)
, the following are true:

∂Gi (ψ)

∂ψ i
< 0,

∣∣∣∣∣∂Gi (ψ)

∂ψ j

∣∣∣∣∣ <

∣∣∣∣∣∂Gi (ψ)

∂ψ i

∣∣∣∣∣ ,∀i. (A.1)

Suppose there are two different roots, ψ̃ and ψ̂ , and assume without loss of generality ψ̃ i < ψ̂ i . By the second inequality 
in Eq. (A.1), if G

(
ψ̃

)
= G

(
ψ̂

)
= 0, then it must be that |ψ̃ j − ψ̂ j| > |ψ̃ i − ψ̂ i |, ∀i, j �= i. The statement contradicts itself. �

Lemma 4. The stage game at time t is dominance solvable. That is, given the priors π i
t−1 and π j

t−1 , there exists a unique rationalizable 

action profile 
(

ei
t , e j

t

)
.

Proof. First, consider the case of complementary efforts, Q ei e j ≥ 0. Let 
[

e j
0, e j

0

]
=

[
ei

0, ei
0

]
= [e, e], and recursively define for 

all i and τ ≥ 1,

bi
τ = arg max

ei
Eπ i

τ−1

[
Q i

(
ei, e j

τ−1, ãi,ψ i
)]

:= arg max
ei

hi
τ

(
ei, e j

τ−1, ãi
)

,

b
i
τ = arg max

ei
Eπ i

τ−1

[
Q i

(
ei, e j

τ−1, ãi,ψ i
)]

:= arg max
ei

hi
τ

(
ei, e j

τ−1, ãi
)

.

The existence of such bi
τ and b

i
τ follow from Assumption 2 and the continuity of Q i . Since Q i is twice continuously 

differentiable, hi
τ is also twice continuously differentiable. Note that complementarity between efforts implies ∂hi

τ

∂ei∂e j ≥ 0, so 

bi
τ ≤ b

i
τ . Let 

[
ei
τ , ei

τ

]
:=

[
ei
τ−1, ei

τ−1

]
∩

[
bi
τ ,b

i
τ

]
. By Assumption 2, 

[
ei

1, ei
1

]
�

[
ei

0, ei
0

]
= [e, e], ∀i. Using ∂hi

τ

∂ei∂e j ≥ 0 again, we 

know [e j
τ , e j

τ ] ⊂ [e j
τ−1, e

j
τ−1] implies that 

[
ei
τ+1, ei

τ+1

]
⊂

[
ei
τ , ei

τ

]
, ∀i, j �= i and ∀τ > 1. By the Nested Intervals Theorem, 

we know that each agent’s set of rationalizable actions 
[

ei
τ , ei

τ

]
converges to the an interval with boundary points which 

are fixed points of mutual optimization. By Lemma 1, there is only one such fixed point. Therefore, there is a unique 
rationalizable action profile, 

(
ei

t, e j
t

)
, and it satisfies
330



C. Ba and A. Gindin Games and Economic Behavior 142 (2023) 315–338
ei
t = arg max

ei
Eπ i

t−1

[
Q i

(
ei, ei

t, ãi,ψ i
)]

,∀i.

Next, consider the case of substitute efforts, Q ei e j ≤ 0. Analogously define 
[

ei
0, ei

0

]
= [e, e] and recursively define for all i

and τ ≥ 1,

bi
τ = arg max

ei
Eπ i

t−1

[
Q i

(
ei, e j

τ−1, ãi,ψ i
)]

:= arg max
ei

hi
τ

(
ei, e j

τ−1, ãi
)

,

b
i
τ = arg max

ei
Eπ i

t−1

[
Q i

(
ei, e j

τ−1, ãi,ψ i
)]

:= arg max
ei

hi
τ

(
ei, e j

τ−1, ãi
)

.

Substitute efforts implies ∂hi
τ

∂ei∂e j ≤ 0, so similarly we have bi
τ ≤ b

i
τ . Let 

[
ei
τ , ei

τ

]
:=

[
ei
τ−1, ei

τ−1

]
∩

[
bi
τ ,b

i
τ

]
. The rest of the 

steps are identical to the previous case. �
Appendix B. Proofs for Section 4

Proof of Proposition 1. In this proof, we show a more general version of Proposition 1. Specifically, we show mutual-
reinforced learning for any e j

S ∈ [e, e] such that if Q eiψ i > 0, then we have e j
S > e j∞

(
ã
)
, and if instead Q eiψ i < 0, then 

e j
S < e j∞

(
ã
)
. Note that e j

S = q j∞(A) always satisfies the condition. We assume Q eiψ i > 0 for both i for this proof. Note that 
we can accommodate Q eiψ i < 0, ∀i by replacing ei, e j with −ei, −e j and substituting the constraint with e j

S < e j∞
(
ã
)
.

We start by showing ei
S > ei∞ and ψ i

S > ψ i∞ . Fixing agent j’s effort at some level e j , consider the following two equations,

gi(e,ψ i) = Q i
(

e, Ai,�i
)

− Q i
(

e, ãi,ψ i
)

= 0, (B.1)

Q i
ei

(
e, ãi,ψ i

)
= 0, (B.2)

where ei and ψ i are the unknown variables. Notice that 
(
ei

S ,ψ
i
S

)
and 

(
ei∞,ψ i∞

)
are solutions to Eqs. (B.1) and (B.2) when 

agent j’s effort is taken to be e j
S and e j∞(ã), respectively.

We denote the set of possible actions and beliefs under a fixed e j by Di
e

(
e j

)
and Di

ψ

(
e j

)
respectively, i.e. 

(
ei,ψ i

) ∈
Di

e

(
e j

) × Di
ψ

(
e j

)
iff it satisfies Eqs. (B.1) and (B.2). By Assumptions 1 and 2, both Di

e

(
e j

)
and Di

ψ

(
e j

)
are nonempty and 

compact for any e j . Further, let ψ̂ i
(
e j

)
represent the largest element in Di

ψ

(
e j

)
, and êi

(
e j

)
represent the corresponding 

effort in Di
e

(
e j

)
. Since 

(
êi

(
e j

)
, ê j

(
ei

))
are continuous over a compact convex set, Brouwer’s fixed point theorem implies 

that there exists a fixed point which is a Berk-Nash equilibrium. We know that e∞ is a fixed point of the correspondence (
Di

e

(
e j

)
, D j

e
(
ei

))
and that it is unique by assumption, so e∞ must also be the fixed point of 

(
êi

(
e j

)
, ê j

(
ei

))
, which implies 

ei∞ = êi(e j∞) and ψ i∞ = ψ̂ i(e j∞). By our assumption of a unique steady state at e j
S , we also have ei

S = êi(e j
S) and ψ i

S = ψ̂ i(e j
S).

Differentiate Eqs. (B.1) and (B.2) with respect to e j ,[
Q i

ei

(
e, Ai,�i

)
− Q i

ei

(
e, ãi,ψ i

)] ∂ei

∂e j
+

[
Q i

e j

(
e, Ai,�i

)
− Q i

e j

(
e, ãi,ψ i

)]
= Q i

ψ i

(
e, ãi,ψ i

) ∂ψ i

∂e j
,

Q i
eiei

(
e, ãi,ψ i

) ∂ei

∂e j
+ Q i

eiψ i

(
e, ãi,ψ i

) ∂ψ i

∂e j
+ Q i

eie j

(
e, ãi,ψ i

)
= 0.

Simplify and then obtain

∂ei

∂e j
=

−Q i
ψ i

(
e, ãi,ψ i

)
Q i

eie j

(
e, ãi,ψ i

) −
[

Q i
e j

(
e, Ai,�i

) − Q i
e j

(
e, ãi,ψ i

)]
Q i

eiψ i

(
e, ãi,ψ i

)
Q i

eiψ i

(
e, ãi,ψ i

)(
Q i

ei

(
e, Ai,�i

) + Q i
ψ i

(
e, ãi,ψ i

) Q i
ei ei

(
e,ãi ,ψ i

)
Q i

eiψ i

(
e,ãi ,ψ i

)
) ,

∂ψ i

∂e j
=

Q i
eiei

(
e, ãi,ψ i

) [
Q i

e j

(
e, Ai,�i

) − Q i
e j

(
e, ãi,ψ i

)] − Q i
ei

(
e, Ai,�i

)
Q i

eie j

(
e, ãi,ψ i

)
Q i

eiψ i

(
e, ãi,ψ i

)(
Q i

ei

(
e, Ai,�i

) + Q i
ψ i

(
e, ãi,ψ i

) Q i
ei ei

(
e,ãi ,ψ i

)
Q i

eiψ i

(
e,ãi ,ψ i

)
) .

When ei and ψ i are taken to be êi(e j) and ψ̂ i(e j), Lemma 5 and positive informational externalities imply that both 
derivatives are positive. Since e j

S > e j∞ , we infer that ei
S > ei∞ and ψ i

S > ψ i∞ .

Next we prove ψ j
S > ψ

j∞ . Observe that ψ j
S is given by

Q j
(

eS , A j,� j
)

− Q j
(

eS , ã j,ψ
j
S

)
= 0.
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Since Q i
ekψ

≥ 0, ∀k, the function Q i
(
e, Ai,�i

) − Q i
(
e, ãi,ψ i

)
is increasing in ei and e j . Hence,

0 = Q j
(

eS , A j,� j
)

− Q j
(

eS , ã j,ψ
j
S

)
= Q j

(
e∞, A j,� j

)
− Q j

(
e∞, ã j,ψ

j∞
)

< Q j
(

eS , A j,� j
)

− Q j
(

eS , ã j,ψ
j∞
)

.

The inequality implies ψ j
S > ψ

j∞ . Since the agents are overconfident, their equilibrium beliefs are always below the true 
levels �. Therefore, ψ∞

(
ã
)
< ψ S < �. �

Lemma 5. Suppose Q eiψ i > 0 for both i. Given e j , when ei = êi(e j) and ψ i = ψ̂ i(e j), we have

Q i
ei

(
e, Ai,�i

)
+ Q i

ψ i

(
e, ãi,ψ i

) Q i
eiei

(
e, ãi,ψ i

)
Q i

eiψ i

(
e, ãi,ψ i

) < 0,∀i.

Proof. Note that êi(e j) and ψ̂ i(e j) satisfy

Q i
(

êi(e j), e j, Ai,�i
)

− Q i
(

êi(e j), e j, ãi, ψ̂ i(e j)
)

= 0.

Let e†i(ψ i) denote the solution to Q i
ei

(
ei, e j, ãi,ψ i

) = 0 for a given ψ i . Then the above equation could be written as

Q i
(

e†i(ψ̂ i(e j)), e j, Ai,�i
)

− Q i
(

e†i(ψ̂ i(e j)), e j, ãi, ψ̂ i(e j)
)

= 0.

Since Q i
(
ei, e j, Ai,�i

) − Q i
(
ei, e j, ãi,�i

)
< 0 for all ei, e j , we infer that for any ψ ′i > ψ̂ i

(
e j

)
,

Q i
(

e†i(ψ ′i), e j, Ai,�i
)

− Q i
(

e†i(ψ ′i), e j, ãi,ψ ′i) < 0,

otherwise there exists an element in Di
ψ

(
e j

)
larger than ψ̂ i(e j), contradicting the definition of ψ̂ i(·). This implies that when 

ψ i = ψ̂ i
(
e j

)
,

∂
[

Q i
(
e†i(ψ i), e j, Ai,�i

) − Q i
(
e†i(ψ i), e j, ãi,ψ i

)]
∂ψ i

< 0,

⇒ Q i
ei

(
e†i(ψ i), e j, Ai,�i

) ∂e†i

∂ψ i
− Q i

ψ i

(
e†i(ψ i), e j, ãi,ψ i

)
< 0.

Since Q i
ei

(
e†i(ψ i), e j, ãi,ψ i

) = 0, we know that

Q i
eiei

(
e†i(ψ i), e j, ãi,ψ i

) ∂e†i

∂ψ i
= −Q i

eiψ i

(
e†i(ψ i), e j, ãi,ψ i

)
.

Plugging this back into the previous inequality, we obtain that when ψ i = ψ̂ i
(
e j

)
and ei = e†i(ψ i),

Q i
ei

(
e, Ai,�i

)
+ Q i

ψ i

(
e, ãi,ψ i

) Q i
eiei

(
e, ãi,ψ i

)
Q i

eiψ i

(
e, ãi,ψ i

) < 0. �

Lemma 6. Let ã, ̃a′ ∈ (
a,a

)2
and ã′

< ã. Suppose agents create positive informational externalities for each other. Then we have:

(i) If Q i
eiψ i > 0, ∀i, then e∞

(
ã′)

> e∞
(
ã
)
;

(ii) If Q i
eiψ i < 0, ∀i, then e∞

(
ã′)

< e∞
(
ã
)
.

Now suppose agents create negative informational externalities for each other, then:

(iii) If Q i
eiψ i > 0, ∀i, then ei∞(a) decreases in ai but increases in a j;

(iv) If Q i
i i < 0, ∀i, then ei∞(a) increases in ai but decreases in a j .
e ψ
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Proof. We only show parts (i) and (iii) since parts (ii) and (iv) follow from analogous arguments. Differentiating the follow-
ing equations that determine the steady state with respect to ai and a j ,

Q i
(

e∞ (a) , Ai,�i
)

− Q i
(

e∞ (a) ,ai,ψ i∞ (a)
)

= 0,

Q i
ei

(
e∞ (a) ,ai,ψ i∞ (a)

)
= 0,

we obtain,

∂ei∞ (a)

∂ak
= I(i,k)ωik

ωiiω j j + ωi jω ji

⎛
⎝Q k

eka
− Q k

ekψk

Q k
a

Q k
ψk

⎞
⎠ ,

where I(i, k) = −1 if i = k and I(i, k) = 1 if i �= k, and ωik = Q −k
e−ke−i + Q −k

e−kψ−k

(
Q −k,A

e−i −Q −k
e−i

)
Q −i

ψ−i

=
Q −k

e−kψ−k

Q −i
ψ−i

(
Q −k,A

e−i − Q −k
e−i + Q −i

ψ−i

Q −k
e−ke−i

Q −k
e−kψ−k

)
. All derivatives are evaluated at e∞ (a) , a, ψ∞ (a), except Q −k,A

e−k which is eval-

uated at e∞ (a) , A, �. From Lemma 5, ωii, ω j j < 0. Positive informational externalities imply that ωi j, ω ji > 0, whereas 
negative informational externalities imply that ωi j, ω ji < 0. Therefore, when Q i

eiψ i > 0, ∀i, we have ∂ei∞(a)

∂ai < 0; in addition, 
∂ei∞(a)

∂a j < 0 if the informational externalities are positive, whereas ∂ei∞(a)

∂a j > 0 when they are negative. This yields the desired 
results in (i) and (iii). �
Proof of Proposition 2. We only consider the case where Q i

eiψ i > 0, ∀i since analogous arguments could be applied to the 
other case where Q i

eiψ i < 0, ∀i. It follows from this assumption and positive informational externalities that the function 
Q i

(
e, Ai,�i

) − Q i
(
e, ãi,ψ i

)
is increasing in ei and e j , so Lemma 6 implies that

0 =Q i
(

e∞
(
ã
)
, Ai,�i

)
− Q i

(
e∞

(
ã
)
, ãi,ψ i∞

(
ã
))

<Q i
(

e∞
(
ã′)

, Ai,�i
)

− Q i
(

e∞
(
ã′)

, ãi,ψ i∞
(
ã
))

≤Q i
(

e∞
(
ã′)

, Ai,�i
)

− Q i
(

e∞
(
ã′)

, ã′i,ψ i∞
(
ã
))

.

Since Q i
(
e∞

(
ã′)

, Ai,�i
) − Q i

(
e∞

(
ã′)

, ã′i,ψ i∞
(
ã′)) = 0, it follows that ψ i∞

(
ã′)

> ψ i∞
(
ã
)

for all i. �
Proof of Proposition 3. Consider the case where Q i

eiψ i > 0 for all i. Then the negative informational externality of j’s action 
implies that Q i

e jψ i ≤ 0.

Part (i). As in the proof of Proposition 1, we have

∂ei

∂e j
=

−Q i
ψ i

(
e, ãi,ψ i

)
Q i

eie j

(
e, ãi,ψ i

) −
[

Q i
e j

(
e, Ai,�i

) − Q i
e j

(
e, ãi,ψ i

)]
Q i

eiψ i

(
e, ãi,ψ i

)
Q i

eiψ i

(
e, ãi,ψ i

)(
Q i

ei

(
e, Ai,�i

) + Q i
ψ i

(
e, ãi,ψ i

) Q i
ei ei

(
e,ãi ,ψ i

)
Q i

eiψ i

(
e,ãi ,ψ i

)
) ,

∂ψ i

∂e j
=

Q i
eiei

(
e, ãi,ψ i

) [
Q i

e j

(
e, Ai,�i

) − Q i
e j

(
e, ãi,ψ i

)] − Q i
ei

(
e, Ai,�i

)
Q i

eie j

(
e, ãi,ψ i

)
Q i

eiψ i

(
e, ãi,ψ i

)(
Q i

ei

(
e, Ai,�i

) + Q i
ψ i

(
e, ãi,ψ i

) Q i
ei ei

(
e,ãi ,ψ i

)
Q i

eiψ i

(
e,ãi ,ψ i

)
) .

Note that the negative informational externality implies that both Q i
ei e j and Q i

e j

(
e, Ai,�i

) − Q i
e j

(
e, ãi,ψ i

)
are non-positive 

and at least one of them has to be strictly negative. It follows that ∂ei

∂e j , 
∂ψ i

∂e j < 0. Therefore, e j
S = e j∞ (A) > e j∞

(
ã
)

implies 
ψ i

S < ψ i∞
(
ã
)
< �i .

Part (ii). By Lemma 6, ei∞ (a) is increasing in a j and e j∞ (a) is decreasing in a j . So ei∞
(
ã
)
> ei∞

(
ã′) and e j∞

(
ã
)
< e j∞

(
ã′). 

It follows that

0 =Q i
(

e∞
(
ã
)
, Ai,�i

)
− Q i

(
e∞

(
ã
)
, ãi,ψ i∞

(
ã
))

>Q i
(

e∞
(
ã′)

, Ai,�i
)

− Q i
(

e∞
(
ã′)

, ãi,ψ i∞
(
ã
))
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=Q i
(

e∞
(
ã′)

, Ai,�i
)

− Q i
(

e∞
(
ã′)

, ã′i,ψ i∞
(
ã
))

.

Since Q i
(
e∞

(
ã′)

, Ai,�i
) − Q i

(
e∞

(
ã′)

, ã′i,ψ i∞
(
ã′)) = 0, this implies that ψ i∞

(
ã′)

< ψ i∞
(
ã
)
. The proof is analogous when 

Q i
eiψ i < 0 for both i. �

Proof of Proposition 4. Differentiate agent i’s true average payoff Q (e∞(a), Ai, A j, �) − c(ei∞(a)) with respect to ai and a j

and evaluate the derivative at A , then we obtain

∂[Q (e∞(a), Ai, A j,�) − c(ei∞(a))]
∂ai

= Q e j (e∞(a), Ai, A j,�)
∂e j∞(a)

∂ai
,

∂[Q (e∞(a), Ai, A j,�) − c(ei∞(a))]
∂a j

= Q e j (e∞(a), Ai, A j,�)
∂e j∞(a)

∂ai
.

When a = A, the optimality of e j∞(A) implies that Q e j (e∞(a), Ai, A j, �) = c′(e j∞(A)) > 0.
When there are positive informational externalities, by Lemma 6, we know that if Q eiψ i > 0 for both i, then 

∂e j∞(a)

∂ai , ∂e j∞(a)

∂a j < 0 and thus both agents are worse off with slight overconfidence; if instead Q eiψ i < 0 for both i, then 
∂e j∞(a)

∂ai , ∂e j∞(a)

∂a j > 0 and thus both agents are better off with slight overconfidence.
On the other hand, when there are negative informational externalities, by Lemma 6, we know that if Q eiψ i > 0 for both 

i, then ∂e j∞(a)

∂a j < 0 but ∂e j∞(a)

∂ai > 0. Therefore, if agent j is slightly overconfident and agent i is correctly specified, then agent 
i is better off but agent j becomes weakly worse off (strictly worse off if ei and e j are strict substitutes). The opposite 
pattern arises when Q eiψ i < 0 for both i. Finally, when Q is symmetric with respect to i and j and ai = a j , the calculations 

in the proof of Lemma 6 imply that ∂e j∞(a)

∂a j /
∂e j∞(a)

∂ai = −Q i
ei ei /Q i

eie j < −1, where the inequality follows from Assumption 2. 
Hence,

∂
[

Q (e∞(a,a), Ai, A j,�) − c(ei∞(a,a))
]

∂a
< 0,

which implies that the agents are worse off when they are equally slightly overconfident. �
Appendix C. Proofs for Section 5

Following Heidhues et al. (2018) (HKS), for each agent i, we define mi
t

(
ψ i

)
to keep track of the actual gap in the average 

output at time t when the unknown variable is believed to take the value of ψ i ,

mi
t

(
ψ i

)
= Q i

(
et , Ai,�i

)
− Q i

(
et , ãi,ψ i

)
,∀i.

Define the lowest upper bound and the highest lower bound for any agent i’ long-run beliefs as follows,

ψ i
∞ := sup

{
ψ i : lim

t→∞�i
t

(
ψ i

)
= 0 almost surely

}
,

ψ
i
∞ := inf

{
ψ i : lim

t→∞�i
t

(
ψ i

)
= 1 almost surely

}
.

Note that all probabilistic statements are with respect to the objective probability measure, unless indicated otherwise. Let 
P̃ i

t denote agent i’s subjective probability measure conditional on the history up to time t . Write the vectors of bounds as 
ψ∞ =

(
ψ i

∞ψ j
∞

)
and ψ∞ =

(
ψ

i
∞,ψ

j
∞

)
. We show that ψ∞ and ψ∞ are bounded in Lemma 8.

Next, we proceed by stating an important lemma established in HKS that could be easily reformulated in a two-agent 
environment. Lemma 7 shows that if some fundamental level ψ i is in the support of the long-run beliefs, the average output 
associated with ψ i should not be consistently higher or lower than the average output associated with �i . We replicate the 
proof to show that this lemma extends to our two-agent environment.

Lemma 7 (Heidhues et al. (2018), Lemma 13). The following are true:

(a) For all i, if lim inft→∞ mi
t

(
ψ i

) ≥ m > 0 for all ψ i ∈ (l,h) ⊂
(
ψ,ψ

)
, then

lim P̃ i
t

[
�i ∈ [l,h)

]
= 0.
t→∞
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(b) For all i, if lim supt→∞ mi
t

(
ψ i

) ≤ m < 0 for all ψ i ∈ (l,h) ⊂
(
ψ,ψ

)
, then

lim
t→∞ P̃ i

t

[
�i ∈ (l,h]

]
= 0.

Proof. We only show (a) since the proof of (b) is analogous. Let li
0(ψ i) denote the subjective prior log-likelihood assigned 

to ψ i by the agent. By the Bayes rule, li
t(ψ

i) := ∑t
s=1 log f

(
mi

t(ψ
i) + εs

) + li
0(ψ

i) denote the log-likelihood assigned to ψ i

by agent i and L(x) :=E log f (x + ε). By Lemma 12 in Heidhues et al. (2018), there exists r > 0 such that

lim inf
t→∞ inf

ψ i∈(l,h)

li′
t (ψ i)

t
≥ lim inf

t→∞
1

t

t∑
s=1

L′(m)
[
−Q i

ψ i (et , ãi,ψ i)
]

≥ r,

where the first inequality is an implication of a generalized law of large numbers and the second inequality follows from 
the log-concavity of f and the observation that L is strictly concave and reaches its peak at 0. Next, notice that when t is 
large,

P̃ i
t

[
�i ∈ [(l + h)/2,h]

]
=

h∫
(l+h)/2

π i
t (ψ

i)dψ i =
(l+h)/2∫

l

π i
t (ψ

i)
π i

t (ψ
i + (h − l)/2)

π i
t (ψ

i)
dψ i

=
(l+h)/2∫

l

π i
t (ψ

i)exp

⎛
⎜⎝

ψ i+(h−l)/2∫
ψ i

li′
t (y)dy

⎞
⎟⎠dψ i

≥ P̃ i
t

[
�i ∈ [l, (l + h)/2]

]
exp

rt(h − l)

2
,

which implies that as t grows to infinity, P̃ i
t

[
�i ∈ [l, (l + h)/2]] goes to 0. Applying this argument iteratively yields the 

desired result. �
Lemma 8. For all i, we have that �i − κa

κψ

(
ãi − Ai

) ≤ ψ i
∞ and ψ i

∞ ≤ �i .

Proof. Suppose �i − κa
κψ

(
ãi − Ai

)
> ψ i

∞ , then

lim inf
t→∞mi

t

(
ψ i

∞
)

= lim inf
t→∞

[
Q i

(
et , Ai,�i

)
− Q i

(
et , ãi,ψ i

∞
)]

> lim inf
t→∞

[
Q i

(
et , Ai,�i

)
− Q i

(
et , ãi,�i − κa

κψ

(
ãi − Ai

))]

> − κa

(
ãi − Ai

)
+ κψ

κa

κψ

(
ãi − Ai

)
= 0.

It then follows from Lemma 7 that a small neighborhood of ψ i
∞ will be assigned zero probability by the agent almost surely 

in the long run, which is a contradiction to the definition of ψ i
∞ . Hence, � − κa

κψ

(
ãi − Ai

) ≤ ψ i
∞ . Analogously we can prove 

ψ
i
∞ ≤ �i . �

Define

ei∞ := sup

{
ei : ei ≤ lim inf

t→∞ ei
t almost surely

}
,

ei
∞ := inf

{
ei : ei ≥ lim sup

t→∞
ei

t almost surely

}
.

Define E∞ :=
[

e1∞, e1
∞

]
×

[
e2∞, e2

∞
]

, which is the set of efforts that may be taken by agents in the long run. In addition, 

define E D∞ :=
{

e : ∃ψ ∈
[
ψ1

∞,ψ
1
∞

]
×

[
ψ2

∞,ψ
2
∞

]
,∀i, s.t. e∗ (

ã,ψ
) = e

}
, which is the set of action profiles that constitutes a 

Nash equilibrium when both agents hold degenerate beliefs in the unknown variables that are in the support of the long-run 
subjective distribution. The next lemma shows that E∞ is a subset of E D∞ .
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Lemma 9. E∞ ⊆ E D∞ .

Proof. By definition, et satisfies

Ẽπ i
t−1

(
Q i

ei

(
et , ãi,ψ i

))
= 0,∀i.

Continuity of Q i
ei implies that there exists ψ̂ t ∈ supp(�i

t) such that ∀i,

Q i
ei

(
et , ãi, ψ̂ i

t

)
= 0.

We know that the support of �i
t is contained in 

[
ψ i

∞,ψ
i
∞

]
when t is large enough almost surely. So ψ̂ i

t lies inside the 

support of �i
t when t is large. Therefore, when t is large, ψ i

∞ ≤ ψ i
t ≤ ψ

i
∞, ∀i almost surely, implying that et ∈ E D∞ almost 

surely. Hence, E∞ ⊆ E D∞ . �

Lemma 10. ∂e∗i
(
ã,ψ

)
∂ψ i has the same sign as Q i

eiψ i , while 
∂e∗ j

(
ã,ψ i

)
∂ψ i has the same sign as Q i

eiψ i Q j
ei e j .

Proof. Note that

Q i
ei

(
e∗ (

ã,ψ
)
, ãi,ψ i

)
= 0,∀i.

Therefore,

∂e∗i
(
ã,ψ

)
∂ψ i

=
−Q i

eiψ i Q j
e je j

Q i
eiei Q j

e je j − Q i
eie j Q j

eie j

,
∂e∗ j

(
ã,ψ

)
∂ψ i

=
Q i

eiψ i Q j
eie j

Q i
eiei Q j

e je j − Q i
eie j Q j

eie j

.

It follows that ∂e∗i
(
ã,ψ

)
∂ψ i has the same sign as Q i

eiψ i and ∂e∗ j
(
ã,ψ

)
∂ψ i has the same sign as Q i

eiψ i Q j
ei e j . �

Proof of Theorem 1. By Lemma 7 and the continuity of Q i , it must be true that lim inf
t→∞ mi

t

(
ψ i

∞
)

≤ 0 almost surely, because 

otherwise Lemma 7 implies that there exists a small neighborhood around ψ i
∞ to which agent i almost surely assigns 

probability 0 in the limit, which contradicts the definition of ψ i
∞ . Analogously, it must be that lim sup

t→∞
mi

t

(
ψ

i
∞

)
≥ 0.

Case (i): Assume for now that both agents are overconfident and create positive externalities. It is sufficient to show 
convergence under the assumption that Q i

eiψ i > 0 and Q i
eiai ≤ 0. Differentiating g with respect to e j , we obtain

∂ gi
(
e,ψ i

)
∂e j

= Q i
e j

(
e, Ai,�i

)
− Q i

e j

(
e, ãi,ψ i

)
. (C.1)

Since Q i
ekψ i > 0, Q i

ekai ≤ 0, ∀i, k, we know that ∂ gi
(
e,ψ i

)
∂ek > 0, ∀i, k. By Lemma 10, since E∞ ⊆ E D∞ , we have e∗

(
ã,ψ∞

)
≤

et ≤ e∗
(

ã,ψ∞
)

almost surely when t is large enough. Hence,

0 ≥ lim inf
t→∞ mi

t

(
ψ i

∞
)

= lim inf
t→∞ gi

(
et,ψ

i
∞

)
≥ Gi

(
ψ∞

)
,∀i,

0 ≤ lim sup
t→∞

mi
t

(
ψ

i
∞

)
= lim sup

t→∞
gi

(
et,ψ

i
∞

)
≤ Gi

(
ψ∞

)
,∀i. (C.2)

Since e∗ (
ã,ψ

)
is increasing in ψ j and ∂ gi

(
e,ψ i

)
∂ek ≥ 0, ∀i, k, we know that Gi (ψ) = gi

(
e∗ (

ã,ψ
)
,ψ i

)
is increasing in ψ j . 

Therefore, Gi
(
ψ i

∞,ψ j
)

≤ 0 for any ψ j ≤ ψ j
∞ and Gi

(
ψ

i
∞,ψ j

)
≥ 0 for any ψ j ≥ ψ

j
∞ . Moreover, by Lemma 8, for all i, ψ j , 

we have Gi
(
�i,ψ j

)
< 0 and Gi

(
�i − κa

κψ

(
ãi − Ai

)
,ψ j

)
> 0. For convenience, let ψ i = �i − κa

κψ

(
ãi − Ai

)
and ψ i = �i for all 

i. The above results can be summarized by:

G
(
ψ∞

)
≤ 0, G

(
ψ

)
> 0, G

(
ψ∞

)
≥ 0, G

(
ψ

)
< 0,

Gi
(
ψ i,ψ j

∞
)

> 0, G j
(
ψ i,ψ j

∞
)

≤ 0,

Gi
(
ψ i ,ψ j

)
≤ 0, G j

(
ψ i ,ψ j

)
> 0, (C.3)
∞ ∞
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Gi
(
ψ

i
,ψ

j
∞

)
< 0, G j

(
ψ

i
,ψ

j
∞

)
≥ 0,

Gi
(
ψ

i
∞,ψ

j
)

≥ 0, G j
(
ψ

i
∞,ψ

j
)

< 0.

By Brouwer’s fixed point theorem, there exist ψ̂, ψ̃ such that ψ̃ ∈
[
� − κa

κψ

(
ã − A

)
,ψ∞

]
, ψ̂ ∈

[
ψ∞,�

]
, and G

(
ψ̂

)
=

G
(
ψ̃

)
= 0. Because the root of G (ψ) = 0 is unique by assumption, it must be that ψ̂ = ψ̃ = ψ∞ = ψ∞ = ψ∞ and thus 

E∞ = E D∞ = {e∞}.
Case (ii): Assume instead that both agents are overconfident create negative informational externalities. Again assume 

that Q i
eiψ i > 0 and Q i

eiai ≤ 0. Analogous to Case (i), we will derive a contradiction if ψ∞ �= ψ∞ . Since informational ex-

ternalities are negative, the signs of Eq. (C.1) are different: ∂ gi
(
e,ψ i

)
∂ei > 0 and ∂ gi

(
e,ψ i

)
∂e j < 0. By Lemma 10, when t is large 

enough, e∗i
(

ã,
(
ψ i

∞,ψ
j
∞

))
≤ ei

t ≤ e∗i
(

ã,
(
ψ

i
∞,ψ j

∞
))

, ∀i. Hence,

0 ≥ lim inf
t→∞ gi

(
et,ψ

i
∞

)
= lim inf

t→∞ mi
t

(
ψ i

∞
)

≥ Gi
(
ψ i

∞,ψ
j
∞

)
,∀i,

0 ≤ lim sup gi
(

et,ψ
i
∞

)
= lim sup

t→∞
mi

t

(
ψ

i
∞

)
≤ Gi

(
ψ

i
∞,ψ j

∞
)

,∀i.

In addition, Gi (ψ) = gi
(
e
(
ã,ψ

)
,ψ i

)
is decreasing in ψ j . Therefore, we obtain some inequalities different from those in Eq.

(C.3):

Gi
(
ψ i

∞,ψ
j
∞

)
≤ 0, G j

(
ψ i

∞,ψ
j
∞

)
≥ 0,

Gi
(
ψ i,ψ

j
)

≥ 0, G j
(
ψ i,ψ

j
)

≤ 0,

Gi
(
ψ i,ψ

j
∞

)
≥ 0, G j

(
ψ i,ψ

j
∞

)
≥ 0,

Gi
(
ψ i

∞,ψ
j
)

≤ 0, G j
(
ψ i

∞,ψ
j
)

≤ 0,

Gi
(
ψ

i
∞,ψ j

∞
)

≥ 0, G j
(
ψ

i
∞,ψ j

∞
)

≤ 0,

Gi
(
ψ

i
,ψ j

)
≤ 0, G j

(
ψ

i
,ψ j

)
≥ 0,

Gi
(
ψ

i
,ψ j

∞
)

≤ 0, G j
(
ψ

i
,ψ j

∞
)

≤ 0,

Gi
(
ψ

i
∞,ψ j

)
≥ 0, G j

(
ψ

i
∞,ψ j

)
≥ 0.

Again, there exist two different roots to G (ψ) = 0 if ψ∞ �= ψ∞ , which are located in [ψ i, ψ i
∞] × [ψ j

∞, ψ j] and [ψ i
∞, ψ i] ×

[ψ j, ψ j
∞] respectively. This contradicts the assumption of a unique steady state. �

Appendix D. Proofs for Section 6

Proof of Theorem 2. We prove the result when there are positive externalities, Q i
eiψ i > 0 and Q i

eiai ≤ 0; the proof for other 
cases is analogous.

Similarly define ψ
i = �i − κa

κψ

(
ãi − Ai

)
and ψ i = �i for all i. Since the agents are underconfident, we now have 

∂ gi
(
e,ψ i

)
∂ek < 0, ∀i, k. With positive informational externalities we again have e∗

(
ã,ψ∞

)
≤ et ≤ e∗

(
ã,ψ∞

)
when t is large 

enough. Therefore,

0 ≥ lim inf
t→∞ mi

t

(
ψ i

∞
)

≥ Q i
(

e∗ (
ã,ψ∞

)
, Ai,�i

)
− Q i

(
e∗ (

ã,ψ∞
)

, ãi,ψ i
∞

)
,∀i,

0 ≤ lim sup
t→∞

mi
t

(
ψ

i
∞

)
≤ Q i

(
e∗ (

ã,ψ∞
)

, Ai,�i
)

− Q i
(

e∗ (
ã,ψ∞

)
, ãi,ψ

i
∞

)
,∀i.

Therefore, gi
(

e∗
(

ã,ψ∞
)

,ψ i
∞

)
≤ 0 ≤ gi

(
e∗

(
ã,ψ∞

)
,ψ

i
∞

)
, ∀i. For each i, define hi (ζ ,ψ) := gi

(
e∗ (

ã, ζ
)
,ψ i

)
. Differenti-

ate hi with respect to ζ k and ψk , we obtain
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∂hi (ζ ,ψ)

∂ζ k
=

(
Q i,A

ei − Q i
ei

) ∂e∗i
(
ã, ζ

)
∂ζ k

+
(

Q i,A
e j − Q i

e j

) ∂e∗ j
(
ã, ζ

)
∂ζ k

∂hi (ζ ,ψ)

∂ψ i
= −Q i

ψ i ,
∂hi (ζ ,ψ)

∂ψ j
= 0,

where Q i,A
ek which denotes the derivative of Q i w.r.t. ek evaluated at e∗ (

ã, ζ
)
, A, ψ . Hence, when 

(
ã, ζ ,ψ

) = (A,�,�),

∂hi (ζ ,ψ)

∂ζ i
= 0,

∂hi (ζ ,ψ)

∂ζ j
= 0,

∂hi (ζ ,ψ)

∂ψ i
= −Q i

ψ i ,
∂hi (ζ ,ψ)

∂ψ j
= 0.

There thus exists δ such that when ã ∈ Bδ (A): (i) the beliefs are also restricted to a small neighborhood, i.e. ψ∞, ψ∞ are 

close to �; (ii) for all i and j �= i, ∂hi(ζ ,ψ)

∂ψ i < − 1
2 κψ < 0, and 

∣∣∣ ∂hi(ζ ,ψ)

∂ζ i

∣∣∣ , ∣∣∣ ∂hi(ζ ,ψ)

∂ζ j

∣∣∣ < 1
4 κψ , 

∣∣∣ ∂hi(ζ ,ψ)

∂ψ j

∣∣∣ = 0. Therefore,

0 ≥ gi
(

e∗ (
ã,ψ∞

)
,ψ i

∞
)

− gi
(

e∗ (
ã,ψ∞

)
,ψ

i
∞

)
≥ 1

4
κψ

(
ψ

i
∞ − ψ i

∞ − ψ
j
∞ + ψ j

∞
)

,

0 ≥ g j
(

e∗ (
ã,ψ∞

)
,ψ j

∞
)

− g j
(

e∗ (
ã,ψ∞

)
,ψ

j
∞

)
≥ 1

4
κψ

(
ψ

j
∞ − ψ j

∞ − ψ
i
∞ + ψ i

∞
)

,

which hold at the same time if and only if ψ∞ = ψ∞ = ψ∞ . �
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