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1 Introduction

How do people interpret and react to new information? This question is fundamental

to economic decision-making: investors adjust their beliefs about the quality of a

stock based on its past performance, managers learn from candidate interviews before

making hiring decisions, and professional forecasters make economic predictions based

on data releases. Standard models assume that people have an accurate mental

representation of the learning environment and use Bayes’ rule to draw inference with

respect to this representation. However, a large literature in economics, finance, and

psychology documents systematic departures from these assumptions.

The literature uses a variety of methods to study how people deviate from the

standard model of belief-updating. The findings are mixed. In laboratory exper-

iments, participants are told the information environment, observe a signal, and

then report their beliefs about an unobserved state. Such experiments generally find

that people underreact to information relative to the Bayesian benchmark (Benjamin

2019).1 Another line of work studies belief-updating using surveys and forecasts of

households and financial industry professionals. In contrast, these studies often find

that people overreact to information (Bordalo, Gennaioli, and Shleifer 2022).2

This paper explores how properties of the learning environment—such as its com-

plexity or the informativeness of signals—impact whether under- or overreaction

emerges. We propose a two-stage model of belief-updating where cognitive con-

straints on attention and processing capacity interact with the learning environment

to systematically distort beliefs. We start with the premise that an individual’s men-

tal representation of her learning environment may differ from the environment she

actually faces. In the representational stage, limits on attention and working mem-

ory prompt the individual to simplify a complex learning environment by focusing

on states that are most salient given the observed signal.3 This channeled atten-

tion causes salient states to be overweighed in her representation. In the processing

stage, limited processing capacity impacts how the individual evaluates information,

generating cognitive imprecision when she forms her subjective belief.

The interaction between attentional and processing constraints generates a rich

set of theoretical predictions about how belief-updating varies with the learning en-

vironment. When information can be ordered by favorableness (i.e., the canonical

good news signal structure (Milgrom 1981)), the framework predicts greater overre-

1Benjamin (2019) writes: “The experimental evidence on inference taken as a whole suggests
that even in small samples, people generally underinfer rather than overinfer.”

2In a review of how people update their beliefs in financial markets, Bordalo et al. (2022) write:
“The expectations of professional forecasters, corporate managers, consumers, and investors appear
to be systematically biased in the direction of overreaction to news.” There are notable exceptions
where underreaction is observed, however, such as the case of forecasting short-term interest rates
(Bordalo, Gennaioli, Ma, and Shleifer 2020) and inflation (Kučinskas and Peters 2022).

3Attention and working memory are closely linked—they are thought to share the same neural
mechanism and therefore draw on the same limited resource, and they both play a critical role in
forming mental representations (Panichello and Buschman 2021; Oberauer 2019).
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action when the state space is more complex, the signal is noisier, the information is

surprising, or the prior is less concentrated on salient states; it predicts more under-

reaction when the state space is simpler, the signal is more precise, the information

is expected, or the prior is more concentrated on salient states.4 It also predicts

underreaction in some complex environments when information is not ordered by

favorableness or there is uncertainty over the signal structure.

A series of experiments provide direct support for these predictions and the pro-

posed cognitive mechanisms. While cognitive imprecision alone can generate the

observed pattern of belief-updating in simple binary-state environments, the mecha-

nism quickly loses explanatory power as the environment becomes more complex—

even when just moving to three states. In contrast, the model which incorporates

both attentional and processing constraints is highly complete in capturing the ob-

served patterns of belief-updating across a wide array of learning environments (Fu-

denberg, Kleinberg, Liang, and Mullainathan 2022).5 The two mechanisms act as

cognitive complements : accounting for both generates belief predictions that are sub-

stantially closer to the data than either mechanism on its own. Importantly, the

large increase in model completeness from simultaneously incorporating both mech-

anisms does not come at the expense of model flexibility—the proposed framework

is also highly restrictive (Fudenberg, Gao, and Liang 2023), and only slightly less

so than either mechanism on its own.6 Taken together, our results help rationalize

the discrepancy between the predominant observation of underreaction in laboratory

studies—which typically use simple binary state spaces, relatively precise signals,

and uniform priors—and the larger prevalence of overreaction in financial market

studies—which feature more complex environments, noisier signals, and a good news

signal structure.

To see how salience-channeled attention and cognitive imprecision interact with

the learning environment, consider the following example. Suppose an individual is

deciding whether to invest in an asset that is either “good” or “bad” (the state) with

equal probability (the prior). A good (bad) asset has a 70 (30) percent chance of

increasing in price and a 30 (70) percent chance of decreasing in price (the signal

distribution). The individual observes a price increase. How should she update her

4In a good news signal structure (Milgrom 1981), signals are ordered so that “better” signals
(good news) increase the likelihood of “better” states. This is the canonical structure used to study
many economic settings, including financial environments (e.g., equities, where a price increase
increases the likelihood that an asset is “good”), moral hazard problems (e.g., a principal-agent
model, where a higher price increases the likelihood that the agent exerted effort), and auction
theory (e.g., higher signals are indicative of a higher value for the object). It is also the canonical
structure used in laboratory experiments.

5Completeness is a measure of the extent to which a model captures the predictable variation
in the data relative to Bayes’ rule.

6Restrictiveness is a measure of the extent to which a model is rejected when tested on “syn-
thetic” data (as opposed to actual data). High restrictiveness rules out that the model is so flexible
that it can fit any data well.
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belief? According to Bayes’ rule, she should increase her belief that the asset is good

from 50 to 70 percent. However, results from laboratory studies suggest that the

individual will underreact and increase her belief from 50 to less than 70 percent.

Now suppose that there are five potential states of equal prior likelihood: good and

bad, with the same chances of a price increase as before, as well as three intermediate

states with a 40, 50, or 60 percent chance of generating a price increase. Does the

increased complexity of the state space impact how the individual updates her belief?

To answer this question, we turn to the literature on how people respond to com-

plexity. This literature conceptualizes complexity based on finite mental resources

and distinguishes between two broad categories: representational and computational.

Representational complexity increases with the number of objects one needs to con-

sider to form an accurate mental representation of the environment (e.g., internalizing

the information structure), as this increases demands on attention and working mem-

ory resources; computational complexity increases with the cognitive costs of carrying

out the task at hand given the mental representation (e.g., processing information

to form beliefs).7 In the case of belief-updating, an individual faces representational

complexity when forming a mental representation of the learning environment and

computational complexity when using her mental representation to process the signal

and form a posterior belief.

In our model, representational complexity increases with the size of the state

space, as a larger state space requires simultaneous consideration of more objects

when internalizing the information structure. Attention and working memory con-

straints imply that an individual can fully attend to a limited number of objects at

any given time.8 As a result, the individual simplifies her learning environment by

channelling attention to a limited number of states. These states are overweighed

relative to other states, resulting in a distorted mental representation of the learning

environment. Importantly, attention is not channeled randomly: the individual fo-

cuses on states that are the most salient, measured by their “representativeness.”9 A

7The cognitive psychology literature distinguishes between representational and computational
capacity constraints because they correspond to different mental resources. This distinction is mir-
rored in the different forms complexity: representational complexity increases demands on attention
and working memory resources while computational complexity increases demands on controlled
processing resources (see Shenhav, Musslick, Lieder, Kool, Griffiths, Cohen, and Botvinick (2017)
for an overview). This implies that complexity is inherently subjective: different people will per-
ceive an information environment as more or less complex depending on their level of the relevant
cognitive resource.

8See Oberauer, Farrell, Jarrold, and Lewandowsky (2016); Luck and Vogel (1997); Loewenstein
and Wojtowicz (2023). For example, in the case of visual stimuli, participants can attend to only
three to four items at any given time (Bays, Gorgoraptis, Wee, Marshall, and Husain 2011).

9A large theoretical and empirical literature shows that attention is channelled to objects as a
function of their salience (see Bruce and Tsotsos (2009) for review). Representativeness is a salience
cue that operates through bottom-up attention. It was initially identified in Kahneman and Tversky
(1972) and its economic implications were explored in Bordalo, Coffman, Gennaioli, and Shleifer
(2016); Bordalo, Gennaioli, Porta, and Shleifer (2019). We empirically study other salience cues—
visual (bottom-up) and goal-directed (top-down)—in Section 4.3 and show that representativeness
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state is more representative of a given signal realization if it is more likely to generate

the realization relative to other states. When the signal has a good news structure,

as in our model and experiments, extreme states are the most salient and hence most

overweighed in the mental representation. Absent other factors, this generates over-

reaction in terms of excess movement of the individual’s subjective expected state

relative to the movement of the Bayesian expected state.10

Returning to the example, the “good” asset is most representative of a price

increase in both the two- and five-state cases. The individual focuses her attention

on this “good” state following a price increase, and as a result, her belief overweighs

its likelihood relative to the other potential states. This mechanism has more bite

as representational complexity increases: in the five-state case, the prior places more

mass on less representative middle states, which implies that channeling attention to

the “good” state will generate a larger distortion in the individual’s representation.

Turning to computational complexity, prior work shows that an individual’s re-

sponse can be modeled as optimal processing subject to noise—broadly termed noisy

cognition (Green, Swets et al. 1966; Thurstone 1927; Woodford 2020).11 This is cap-

tured in the processing stage of our framework via the individual updating with a

noisy version of Bayes’ rule with respect to her (potentially distorted) mental repre-

sentation. This leads to insensitivity to the signal and thus underreaction. Combining

both stages, channeled attention and cognitive imprecision interact with the proper-

ties of the learning environment to determine whether underreaction or overreaction

emerges overall.

Returning again to the example, our model predicts that the individual underre-

acts to the price increase when the asset is simple (the two-state case), but overreacts

when the asset is more complex (the five-state case). In the simple case, limited at-

tention generates a relatively small distortion and cognitive imprecision dominates:

the individual does not fully internalize the informativeness of the price increase and

underreacts to it. On the other hand, when the asset is complex, limited attention

generates a more distorted mental representation and this dominates the impact of

cognitive imprecision, which leads to overreaction.12

Beyond state-space complexity, our framework predicts how the other properties

of the learning environment impact belief-updating. With respect to signal informa-

is the dominant driver of attention in our setting.
10Under alternative signal structures, our model still predicts that the representative state will

be overweighed. Section 6.1 shows that this prediction is supported empirically. But whether this
overweighing results in overreaction now depends on the signal realization.

11A recent literature in economics applies the principles of noisy cognition to explain anomalies
in choice under uncertainty (Khaw, Li, and Woodford 2022; Frydman and Jin 2022; Enke and
Graeber 2023; Woodford 2020) and forecasting (Azeredo da Silveira andWoodford 2019; Augenblick,
Lazarus, and Thaler 2022; Gabaix 2019).

12By focusing on a limited number of states in the representational stage, the individual di-
minishes the impact of increasing states on computational complexity, and therefore, cognitive
imprecision. As shown in Section 3, this is born out in the data.
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tiveness, our model predicts that the extent of overreaction will decrease as signals

become more diagnostic of the state. In the example above, this means that the

individual will overreact more when the good and bad assets have a 60 and 40 per-

cent chance of a price increase, respectively, compared to a more precise signal where

these chances are 80 and 20 percent.13 Regarding the prior, our framework predicts

less overreaction when the prior concentrates more mass on the extreme states and

more overreaction when it concentrates less mass on these states. In the case of

an asymmetric prior, “surprising” disconfirmatory signals—those that increase the

likelihood of states that the prior assigns lower probability—generate overreaction,

and “expected” confirmatory signals generate underreaction or even wrong direction

reaction.14 As we show in Section 2, these predictions follow from the interaction

between salience-channeled attention and cognitive imprecision.

We test these predictions in a series of experiments. We adopt the classic “bookbag-

and-poker-chip” design originally used in Edwards (1968) and employed extensively

in the learning literature. A set number of bags have different colored balls in known

proportions. For example, Bag 1 contains 70 red balls and 30 blue balls while Bag 2

contains 30 red balls and 70 blue balls. One bag is chosen at random with a known

probability. A ball is drawn from it and shown to the participant. The participant

then reports her belief about the likelihood that each bag was selected. Parameters

in the design have a straightforward correspondence to our model: bags represent

states, the probability that each bag is selected corresponds to the prior, and the pro-

portion of balls in each bag represents the signal distribution. We employ three main

sources of treatment variation: representational complexity via the number of states

(varying from 2 as is standard up to 11), the signal distribution, and the symmetry

and concentration of the prior.

Increasing complexity has a striking effect on belief-updating. We first replicate

the standard finding that people generally underreact in simple 2-state uniform-prior

environments. But this result flips when we add even a single additional state: the

majority of participants overreact in 3-state uniform-prior environments across all

signal distributions we consider. The share of participants overreacting and the

level of overreaction both increase monotonically with the complexity of the state

space up through 11 states. Importantly, our model not only makes predictions

about average belief movement, but also on which states will be overweighed versus

underweighed. We provide direct support for these predictions in a state-by-state

13In a simple two-state setting, Edwards (1968) and Benjamin (2019) show that underreaction
decreases as the signal becomes noisier, even flipping to overreaction for very noisy signals. Augen-
blick et al. (2022) show that this relationship is consistent with a model of cognitive noise. Our
model shows that the same pattern can be generated by salience-channeled attention as well.

14In the simple asset example, if there is an 80% chance of the good asset and a 20% chance of
the bad asset, then a price increase is a confirmatory signal and a price decrease is disconfirmatory.
Wrong direction reaction occurs when the individual’s belief that the asset is good decreases after
observing a price increase or vice versa.
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analysis of subjective beliefs. As shown in Section 3.4, the interaction between the

two mechanisms is crucial for this prediction; they act as cognitive complements and

neither alone can explain our observed patterns of belief-updating.15

We next test the predictions on signal informativeness and the prior. Consistent

with the predictions, overreaction decreases with signal diagnosticity and increases as

the prior becomes more concentrated on intermediate states. Turning to asymmetric

priors, we observe underreaction to confirmatory, expected signals and overreaction

to surprising, disconfirmatory signals. Documenting the latter in a simple two-state

setting contrasts with the observed underreaction under a symmetric prior. Moreover,

consistent with our prediction, we observe nearly three times as many wrong direction

reactions to confirmatory realizations compared to disconfirmatory realizations.

We use the experimental data to structurally estimate the two key parameters

of our model—capturing the severity of the attentional and processing distortions.

In aggregate, both estimates differ from the Bayesian benchmark and are in line

with values found in prior work. At the individual level, the vast majority of par-

ticipants exhibit significant distortions from both salience-channeled attention and

cognitive imprecision. Moreover, these individual estimates are significantly posi-

tively correlated, suggesting underlying differences in cognitive capacity driving both

the representational and processing stages of belief-updating.

We then directly test the proposed attentional mechanism in the representational

stage. Employing a common paradigm from cognitive science to measure and manip-

ulate attention (Payne, Bettman, and Johnson 1988), we find that upon observing

the signal, participants’ attention was indeed overwhelmingly drawn to the most

“representative” state. Moreover, fixing the information structure, exogenously lim-

iting attentional resources exacerbated overreaction. Structural estimates show that

this is driven by a greater distortion in the representational stage without affecting

the processing stage. We then proceed to study the causal effect of attention on

belief-updating using a variation of our 5-state paradigm that suppresses represen-

tativeness as a salience cue. In this variation, attention is channeled to states as-if

randomly. Consistent with the predicted distortion, the random state is overweighed

and underreaction emerges on average. These results imply that underreaction is

not a unique feature of the simple 2-state environment; it can also emerge in com-

plex environments where the representativeness salience cue is suppressed or there

is uncertainty over it. Finally, we compare representativeness to other salience cues

considered in the literature (visual and goal-directed salience); we show that the

former has a substantially stronger influence in channeling attention.

To evaluate model fit, we measure its completeness in capturing predictable vari-

15Specifically, cognitive imprecision alone predicts that the most representative state will be
underweighed and the least representative state will be overweighed, while representativeness-driven
salience alone predicts the opposite pattern. Neither of these patterns is borne out in the data, but
the prediction from the interaction of the mechanisms is.
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ation in belief-updating (Fudenberg et al. 2022) relative to Bayes’ rule. The model

has high explanatory power across both simple and complex environments, capturing

nearly all of the explainable variation in both cases (completeness 1.00 and 0.92, re-

spectively, on a scale of 0 to 1). Each stage alone does not fare nearly as well. While

cognitive imprecision can explain belief-updating in simple environments (complete-

ness 1.00), it precipitously loses explanatory power in complex environments (drop-

ping to 0.36). Salience-channeled attention alone has low explanatory power across

both simple and complex environments. This further demonstrates that the two

mechanisms act as cognitive complements: their interaction plays a critical role in

predicting belief-updating. Notably, the two-stage model’s completeness does not

come at the expense of being too flexible: it is nearly as restrictive (Fudenberg et al.

2023) as each of the stages on its own.

Finally, we explore several variations of our model in other information environ-

ments and beyond inference. There are important real-world settings that do not

have a good news signal structure (e.g., an increase in inflation or the interest rate

conveys mixed information about the economy). We show that under an alternative

signal structure, representativeness continues to drive the overweighing of states.

However, this overweighing can now generate underreaction to a signal realization

that is representative of an intermediate state, as we observe in the data. We also

apply our framework to forecasting. We empirically show that differences in repre-

sentational complexity also lead to predictable over- or underreaction in forecasts.

Lastly, applying our framework to financial instruments, we experimentally show that

the complexity of an asset’s structure—namely, simple binary option versus an in-

formationally equivalent but more complex bull spread—determines whether people

under- or overreact to news about its performance.

A large literature explores under- and overreaction in belief-updating. We provide

an in-depth review of this work in Appendix A and discuss how our results can help

rationalize some of the disparate findings. For instance, our model predicts underre-

action in simple settings such as the binary-state experiments reviewed in Benjamin

(2019), and overreaction in more complex environments with a good news signal

structure, such as the studies in financial markets reviewed in Bordalo et al. (2022).

Our framework also predicts the observed underreaction in complex settings where

the representative state is not clear, the signal structure is not good news, or the

signal is not attended to. This can help rationalize empirical results in these environ-

ments (e.g., underreaction to US treasury rates and inflation expectations; Bordalo

et al. (2020); Kučinskas and Peters (2022); DellaVigna and Pollet (2009)). We also

discuss how our findings relate to the evidence on how investor behavior (prices)

responds to news in financial markets (Daniel, Hirshleifer, and Subrahmanyam 1998;

Barberis, Shleifer, and Vishny 1998; Klibanoff, Lamont, and Wizman 1998).

The paper also contributes to the literature exploring the cognitive foundations of

7



economic decision-making. Our two-stage model is similar in spirit to Schwartzstein

(2014), where the individual selectively channels her attention to a subset of the

available information and then uses this subset to update her beliefs using Bayes

rule. Our findings on the role of complexity relate to research showing that people

are averse to complexity (Oprea 2020), and as a result, adopt simpler mental models

(Kendall and Oprea 2021; Molavi 2022; Molavi, Tahbaz-Salehi, and Vedolin 2023),

form simpler hypotheses (Bordalo, Conlon, Gennaioli, Kwon, and Shleifer 2023),

and use heuristics to reduce the mental cost of judgments and decisions (Salant and

Spenkuch 2022; Banovetz and Oprea 2023; Oprea 2022). Another strand of research

models an individual as optimally responding to a stimulus given a noisy representa-

tion of the environment (Gabaix and Laibson 2017; Khaw, Li, and Woodford 2021;

Khaw et al. 2022). Such cognitive noise has been shown to generate insensitivity to

the parameters of the environment (Enke and Graeber 2023). Our theoretical frame-

work is linked to both areas of research: our proposed model incorporates a heuristic

response to complexity and cognitive imprecision as two stages of the belief-updating

process.

The rest of the paper proceeds as follows. Section 2 outlines the theoretical frame-

work. Section 3 outlines the experimental paradigm, empirical findings, and struc-

tural estimation. Section 4 presents evidence for the proposed mechanism. Section 5

quantifies model completeness and restrictiveness. Section 6 tests the implications of

our model in other settings. Section 7 concludes.

2 Theoretical Framework

In this section we formalize a two-stage model of belief formation, define a measure

of over- and underreaction and derive comparative static predictions on how this

measure varies with properties of the information environment, and finally derive

predictions on how the subjective belief distribution varies with the degree of bias in

each stage. All proofs are in Appendix B.

2.1 Information Environment

A state ω is drawn from state space Ω ≡ {ω1, ..., ωN} ⊂ (0, 1) with N > 1 distinct

states in ascending order, ω1 < ... < ωN , and generic element ωi. The state is dis-

tributed according to full-support prior p0 ∈ ∆(Ω). A signal s provides information

about the state. We focus on a binary signal with a good news structure (Milgrom

1981), as is used in the majority of prior experimental work and mirrors many real-

world settings (e.g., equity markets and many economic indicators such as GDP).16

Let S ≡ {s1, s2} denote the support of the signal, with generic realization sj. In state

ωi, the signal is distributed according to π(s2|ωi) = ωi and π(s1|ωi) = 1 − ωi. For

16For example, a stock price increase (decrease) can be interpreted as a positive (negative) signal
about the underlying value of the company, and similarly for GDP as a signal about the economy.
The majority of our experiments focus on this case; in Section 6.1 we explore an alternative signal
structure.
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example, when Ω = {0.3, 0.5, 0.7}, signal realization s2 occurs with probability 0.3 in

state ω1, 0.5 in state ω2, and 0.7 in state ω3. Since the probability of s2 is increasing

in the state and s1 is decreasing, s2 is indicative of higher states (good news) and s1

is indicative of lower states (bad news). We refer to Ω as the information structure,

since the signal distribution is pinned down by the state space, and (Ω, p0) as the

information environment. This information environment mirrors the experimental

paradigm in Section 3.

Given an information environment (Ω, p0), by Bayes’ rule, the objective posterior

probability of state ωi following signal realization s2 is

pB(ωi|s2) ≡
ωip0(ωi)∑

ωk∈Ω ωkp0(ωk)
, (1)

and analogously following s1, pB(ωi|s1) ≡ (1− ωi)p0(ωi)/
∑

ωk∈Ω(1− ωk)p0(ωk). Let

pB(sj) = (pB(ω1|sj), ..., pB(ωN |sj)) denote this objective posterior.

We next define several properties of information environments, which we will

manipulate for our comparative static predictions. An information structure Ω′ is

more complex than Ω if Ω′ contains weakly more states, |Ω′| ≥ |Ω|, and more

dispersed than Ω if the minimum and maximum states in Ω′ are weakly smaller

and larger, respectively, ω′
1 ≤ ω1 and ω′

N ≥ ωN . An information structure Ω is

symmetric if ωi ∈ Ω implies 1 − ωi ∈ Ω. A prior p0 is symmetric on Ω if for

any ωi ∈ Ω, ωi and 1− ωi have the same mass, p0(ωi) = p0(1− ωi). Note that prior

symmetry implies information structure symmetry (but not vice versa), and therefore,

if p0 is symmetric we also refer to (Ω, p0) as a symmetric information environment.

Related to individual states, state ωk is more interior than ωi if it is closer to 1/2,

|ωk − 1
2
| ≤ |ωi − 1

2
|. The diagnosticity in state ωi is the probability of the more likely

signal realization, di ≡ max{ωi, 1 − ωi}. Within the class of symmetric information

structures, the set of diagnosticities is sufficient for the information structure.17

2.2 Two-Stage Model of Belief-Formation

We next model how the agent forms subjective beliefs in the face of complexity.

As discussed in the introduction, research on how individuals respond to complexity

conceptualizes it based on finite mental resources and highlights two key categories—

representational and computational. Representational complexity requires attention

and working memory resources while computational complexity draws on resources

related to controlled processing (Shenhav et al. 2017; Botvinick and Cohen 2014).

Both forms impact how an agent forms her subjective posterior belief. First, attention

and working memory constraints lead her to form a distorted mental representation

of the information structure. Second, computational capacity constraints introduce

cognitive imprecision in processing information (updating beliefs) with respect to this

17For example, in Ω = {0.3, 0.5, 0.7}, the set of diagnosticities {0.5, 0.7} pin down Ω.
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mental representation. Note that the link between complexity and cognitive resources

implies that an agent’s capacity of the relevant resource drives her perception of

complexity; this is captured in our model through two key parameters.

Stage 1: Mental Representation. Before processing the signal, an agent first

forms a mental representation of the information environment. Representational

complexity is the relevant category for the representational stage, as it captures the

number of objects the agent needs to consider to form an accurate mental repre-

sentation. In our setting, representational complexity is proportional to the size of

the state space, since in larger state spaces the agent needs to simultaneously con-

sider more objects when forming a belief.18 With fixed constraints on attention and

working memory, the agent simplifies the information environment in her mental

representation by channeling attention to a limited number of states and neglecting

others.19 Therefore, higher representational complexity leads to a more distorted

mental representation, as it results in the agent neglecting a larger number of states.

In the face of representational complexity, a key question is which states the

agent channels attention to and which she neglects. Prior work finds that attention

is channelled towards salient objects (Bruce and Tsotsos 2009).20 Based on this

research, we propose that the agent channels attention proportional to the salience

of each state given the observed stimulus cue. This results in a distorted mental

representation π̂ of the information structure that scales the likelihood of sj in state

ωi proportional to the salience of ωi when observing sj,

π̂(sj|ωi) ≡ π(sj|ωi)R(ωi, sj)
θ (2)

where R(ωi, sj) ≥ 0 measures the salience of state ωi given sj and θ ≥ 0 captures

the severity of the attentional distortion (higher θ corresponds to more distortion).21

18The focus on state complexity as a key driver of representational complexity is mirrored in
both theoretical and empirical work in finance (Molavi et al. 2023; Puri 2022) and computer science
(Gao, Moreira, Reis, and Yu 2015; Papadimitriou 2003), and has been shown to have a large impact
on choice (Oprea 2020).

19Research has shown that an agent can attend to and keep in mind a limited number of objects
at a time—typically 3 or 4 (Oberauer et al. 2016; Luck and Vogel 1997; Loewenstein and Wojtowicz
2023).

20Salience can channel attention towards objects through both top-down and bottom-up pro-
cesses (Talsma, Senkowski, Soto-Faraco, and Woldorff 2010; Yantis 2008; Tanner and Itti 2019).
Bottom-up attention, also known as stimulus-driven attention (Li and Camerer 2022), corresponds
to attention channeled through a subconscious response to a stimulus; attention is channeled based
on the stimulus’s inherent properties relative to the rest of the information environment (i.e., visual
salience). Top-down attention corresponds to intentionally allocating attention through a con-
scious process, typically in response to incentives in the information environment (i.e., goal-directed
salience). The literature on rational inattention develops models of top-down attention (Maćkowiak,
Matějka, and Wiederholt 2023).

21Representation π̂ is a pseudo-information structure, in the sense that substituting it for the true
information structure in Bayes’ rule results in a well-defined posterior belief over the state space, but
π̂ is not necessarily a probability distribution (π̂(sj |ωi) may not sum to one across signals). When
there are two states, a well-defined probability distribution over signals—a misspecified model—that
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When θ = 0, the mental representation is accurate, and when θ > 0, the mental

representation overweighs the probability of the signal realization in more salient

states and underweighs it in less salient states.

An important driver of salience is the extent to which an object is “representative”

of the stimulus cue—in our setting, the observed signal (Kahneman and Tversky

1972; Tversky and Kahneman 1983). For example, when predicting the hair color of

someone from Ireland, people overweigh the likelihood that the person has red hair,

as someone from Ireland is more likely to have red hair than the general population—

red hair is representative of someone from Ireland (Bordalo et al. 2016). Motivated by

these findings, we use a state’s “representativeness” of the observed signal (Gennaioli

and Shleifer 2010) as our main measure of its salience, where the representativeness

of state ωi for signal realization sj is equal to the conditional probability of sj in ωi

relative to the total probability of sj,
22

R(ωi, sj) ≡
π(sj|ωi)

Pr(sj)
. (3)

A state is more representative if it is more likely to generate sj relative to other

states. Under a good news signal structure, ω1 is the most representative state for

s1 and ωN is the most representative state for s2.
23 Substituting this expression for

R(ωi, sj) into Eq. (2) yields mental representation

π̂(sj|ωi) =
π(sj|ωi)

θ+1

Pr(sj)θ
. (4)

This representation overweighs the probability of a signal realization in states that

are more likely to generate it.24

Discussion. In the first stage, the agent responds to complexity in the information

environment by honing in on a subset of states while neglecting the other states. To

see the intuition, consider an investor who forms beliefs about a new tech company.

The state space includes the possibility that the firm is a zombie (non-viable and set

to crash), a unicorn (e.g., Google, Facebook), or a slew of intermediate possibilities.

Upon observing a price increase (the signal), a boundedly rational investor does not

have the cognitive capacity to consider all of the states when forming beliefs. Because

unicorns are ‘representative’ of a price increase, the investor overweighs the possibility

“represents” π̂, in that it prescribes the same Bayesian updates as π̂, exists. When there are more
states than signals, it will generally be necessary to augment the signal space in order to find such
a misspecified model representation. See Bohren and Hauser (2024).

22This is equivalent to the definition of representativeness in Gennaioli and Shleifer (2010) taking
the prior as the comparison group, and is also the measure used in Bordalo et al. (2016, 2019).

23We empirically study other salience cues—visual (bottom-up) and goal-directed (top-down)—
in Section 4.3 and show that representativeness is the dominant driver of attention in our setting.

24As we show in Appendix B, applying Bayes rule to this representation results in an updating
rule that “counts” a signal θ + 1 times; it is equivalent to forming a posterior belief based on the
representativeness-based discounting weighing function used in Bordalo et al. (2016, 2019).
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of a unicorn, at the expense of other states. This does not imply that the investor is

completely unaware of other states; these states just receive less weight compared to

the Bayesian benchmark.

Our framework is part of a broader literature on how people use simplification

strategies when making decisions or forming beliefs. For example, in Bordalo et al.

(2023), an agent simplifies hypotheses using bottom-up attention, focusing on fea-

tures that are salient. The evaluation of these features generates different biases

depending on which features are salient, despite the same underlying information

structure. Such strategies correspond to the representational stage of our model, but

rather than channeling attention to objects (e.g., states) as in our model, attention

is channeled to features of the decision environment (e.g., signal diagnosticity, prior).

Similarly, Banovetz and Oprea (2023) show that agents simplify decision rules by

‘economizing’ on the number of states that need to be tracked to execute the rule.

See Payne, Bettman, and Johnson (1993) for a review of evidence on heuristics as a

simplification tool in complex environments.

While we focus on a setting where representativeness channels attention in the

context of “online” stimuli, Gennaioli and Shleifer (2010) and Bordalo, Coffman,

Gennaioli, Schwerter, and Shleifer (2021) argue that the most representative states

are also overweighed in judgment because they are easier to recall. See also Kahne-

man (2003) for a discussion on the interaction between selective attention and recall,

and how this relates to heuristics in judgment. Exploring how attention interacts

with memory in belief updating is an exciting avenue for future research.

Finally, we focus on representativeness as a driver of salience because we believe

it to be particularly relevant for the environments our framework aims to capture.

Section 4.3 provides empirical support for this claim. The model can also capture

other salience-based distortions, including low-level bottom-up channels (e.g., visual

salience) and top-down drivers of attention (e.g., goal-directed salience). See Ap-

pendix C.3 for a variation of the model with alternative salience cues.

Stage 2: Processing. After forming a mental representation, carrying out the

process of updating beliefs requires computation; this process draws on controlled

processing resources—a requirement of greater resources corresponds to higher com-

putational complexity.25 A large literature in cognitive psychology models such com-

plexity as optimal processing subject to noisy cognition (Green et al. 1966; Thurstone

1927). In our context, this corresponds to an agent perceiving the parameters of the

information environment with noise, treating the perceived parameters as signals

of their underlying values rather than using them directly. This leads to reduced

sensitivity to these parameters when the agent processes the observed signal.

Following the literature (Woodford 2020; Khaw et al. 2022), we model cognitive

25For example, see Enke and Shubatt (2023) for an analysis of lottery attributes that require
greater processing resources, and are therefore linked to greater computational complexity.
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imprecision in inference as the agent updating by applying a noisy version of Bayes’

rule to her mental representation. Specifically, fixing signal realization sj, she ob-

serves a noisy cognitive signal Y (sj) ≡ (Y (ω1|sj), ..., Y (ωN |sj)) of the posterior belief
pR(sj) ≡ (pR(ω1|sj), ..., pR(ωN |sj)) derived from applying Bayes’ rule to her mental

representation, where

pR(ωi|sj) ≡
π̂(sj|ωi)p0(ωi)∑

ωk∈Ω π̂(sj|ωk)p0(ωk)
(5)

given mental representation π̂. We assume that this cognitive signal is drawn from

a multinomial distribution with η ≥ 0 trials, N = |Ω| categories (i.e., states), and

event probabilities pR(sj):

Y (sj) ∼
1

η
Multi(η,N, pR(sj)).

The cognitive signal is unbiased, in that its mean is equal to the non-noisy posterior

pR(sj). The multinomial distribution is a natural choice for the distribution of a

signal of a probability distribution, as any realization y = (y1, ..., yN) is indeed a

probability distribution: each component yi is between 0 and 1 and the components

sum to one. It is the multi-state generalization of the binomial distribution used in

Enke and Graeber (2023). The parameter η captures the precision of cognition: it

is as-if the agent observed η draws from distribution pR(sj). Therefore, a higher η

corresponds to a more precise cognitive signal.

To form a belief about pR(sj) from the cognitive signal, the agent needs a prior

over pR(sj). We assume this cognitive prior is a Dirichlet distribution with N cate-

gories (i.e., states) and concentration parameters νp0, where p0 ∈ ∆(Ω) is the mean

and 1/ν ≥ 0 scales the variance. The Dirichlet distribution is a natural choice for the

cognitive prior distribution, since its support is the set of probability distributions

over N objects. It is the multi-state generalization of the Beta prior distribution

used in Enke and Graeber (2023). As in Enke and Graeber (2023), p0 has the in-

terpretation of a cognitive default—that is, an agent’s average prior belief about the

posterior before processing the parameters of a particular learning environment. We

assume that this default is the “ignorance prior”, p0(ωi) = 1/N for all ωi ∈ Ω, such

that, on average, the set of possible parameters do not result in a posterior belief

over the state space that places greater weight on any one state. The parameter ν

determines how concentrated the cognitive prior is around the default.

Given realized cognitive signal y(sj) after observing signal realization sj, the

agent uses Bayes’ rule to form a posterior belief about pR(sj). Since the Dirichlet

distribution is the conjugate prior of the multinomial distribution, this posterior also

follows a Dirichlet distribution with concentration parameters νp0+ηy(sj) and mean

µ(y(sj)) ≡ E[pR(sj) | y(sj)] = λy(sj) + (1− λ)p0, (6)
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where λ ≡ η/(η + ν) ∈ [0, 1]. For our predictions, we focus on the mean observed

posterior, which corresponds to the expectation of µ(Y (sj)) conditional on pR(sj),

i.e., E[µ(Y (sj))|pR(sj)]. From Eq. (6), this is equal to

p̂(sj) ≡ λpR(sj) + (1− λ)p0. (7)

We refer to this as the agent’s subjective posterior. When λ < 1, the agent biases

her subjective posterior towards the cognitive default. As cognition becomes noisier

(lower η) or the cognitive prior becomes more precise (higher ν), the subjective belief

places more weight on the cognitive default (lower λ), and as cognition becomes more

precise (higher η) or the cognitive prior becomes more diffuse (lower ν), the agent

places more weight on the posterior belief derived from her mental representation

without noise (higher λ). In a good news environment, cognitive imprecision leads

to an underweighing of extreme states and generates underreaction.

This subjective posterior belief p̂(s) = (p̂(ω1|s), ..., p̂(ωN |s)) forms the basis of

our theoretical analysis. It incorporates how channeled attention and cognitive im-

precision interact with the properties of the learning environment to impact belief

formation. Note that when λ = 1 and θ = 0, it is equal to the objective Bayesian

posterior pB.

Discussion. In the second stage, an agent with limited processing capacity does not

fully internalize the parameters of the information environment. To see the intuition,

return to the example of an investor who forms beliefs about a new tech company.

In different markets, there are different prior probabilities over unicorns, zombies,

and intermediate types, as well as probabilities of a price increase for each of these

types. The boundedly rational investor faces cognitive imprecision when adjusting

to the parameters of each particular market, which dampens her response to the

signal relative to a cognitively precise investor. This does not imply that the investor

completely ignores differences across markets; she just does not fully adjust.

Prior work models cognitive imprecision as noisy processing with respect to the

objective information environment (Augenblick et al. 2022; Enke and Graeber 2023).

A contribution of this paper is to consider processing noise with respect to the agent’s

mental representation of the environment, which, as we argue above, may differ from

the actual environment due to distortions from other cognitive constraints (e.g., lim-

ited attention, memory). Notably, the representational stage simplifies the informa-

tional environment such that an increase in objects (in our case, states) does not

necessarily increase computational complexity.

An important assumption is that the cognitive default is the “ignorance prior.”

We provide empirical evidence for this assumption in Section 3.1. A direct implica-

tion is that the agent exhibits insensitivity to both the prior—base-rate neglect—and

the new information conveyed by the signal—signal-diagnosticity neglect. Both com-
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ponents play a role in our prior asymmetry prediction; hence, the empirical support

for this prediction in Section 3 provides evidence of both forms of neglect. We com-

pare our model with other models of cognitive imprecision in Appendix C, including

Augenblick et al. (2022) which generates a more flexible form of signal-diagnosticity

neglect by allowing the cognitive default to vary.

Noisy cognition is related to the anchoring-and-adjustment heuristic in the judg-

ment and decision-making literature (Tversky and Kahneman 1974), where an agent

enters a decision environment with an “anchor” belief p0 and insufficiently adjusts to

new information (see Enke and Graeber (2023) for a similar discussion). We are not

the first to consider the relationship between the representativeness and anchoring-

and-adjustment heuristics (see discussion in Griffin and Tversky (1992)), but our

model is unique in formally developing its predictions for belief-updating.

Cognitive Constraints and Disagreement. An important implication of linking

belief-updating to attention and processing constraints is the emergence of disagree-

ment. Individuals with tighter attention constraints, as captured by θ, will channel

more attention to the representative states; those with tighter processing constraints,

as captured by λ, will exhibit more cognitive imprecision. This implies that peo-

ple with different capacity constraints will systematically end up holding different

posteriors even when they have the same prior and observe the same information.

Moreover, the noise introduced by cognitive imprecision also implies that people with

the same capacity constraints will hold different posteriors, even though on average

such individuals have the same posterior.

This is related to the type of disagreement that emerges in Bordalo et al. (2023),

where people end up holding different beliefs depending on which features of the

information environment they attend to (e.g., diagnosticity or prior). In their frame-

work, contextual factors (e.g., how a problem is described) make certain features

more salient than others; variation in contextual factors leads to differences in which

features are attended to, and hence, disagreement. Our model links the emergence of

disagreement to cognitive constraints, and as a result, to notions of representational

and computational complexity. Notably, changes in representational complexity may

not only impact which objects within a feature that are attended to, as in our model,

but also which features the individual focuses on. The impact of cognitive constraints

and complexity on disagreement is an important avenue for future work.

2.3 Predictions on Under/overreaction

Our model gives rise to a rich set of comparative predictions on how over- and

underreaction vary with the information environment. We show that the two-stage

model generates distinct predictions from either stage on its own.
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2.3.1 Measuring Over- and Underreaction

We first define overreaction based on a comparison of the expected state under the

subjective and objective posteriors. Let Ê(ω|sj) =
∑

ωi∈Ω ωip̂(ωi|sj) denote the

subjective posterior expected state following signal realization sj, with an analogous

definition for the objective posterior expected state EB(ω|sj). The subjective expected
movement following signal realization sj is the difference between the subjective

posterior and prior expected state, Ê(ω|sj)−E0(ω), and analogously for the objective

expected movement EB(ω|sj)−E0(ω). An agent overreacts to sj when she moves in

the same direction as the objective posterior but her subjective expected movement

is greater in magnitude than the objective expected movement; she underreacts if it

is less. In contrast, the agent exhibits wrong direction reaction when she moves in

the opposite direction to the objective posterior.

Definition 1 (Over- and Underreaction).

(i) The agent overreacts to sj if |Ê(ω|sj) − E0(ω)| > |EB(ω|sj) − E0(ω)| and

Ê(ω|sj) ≥ E0(ω) iff EB(ω|sj) ≥ E0(ω).

(ii) The agent underreacts if |Ê(ω|sj)−E0(ω)| < |EB(ω|sj)−E0(ω)| and Ê(ω|sj) ≥
E0(ω) iff EB(ω|sj) ≥ E0(ω).

(iii) The agent wrong direction reacts if (Ê(ω|sj)−E0(ω))(EB(ω|sj)−E0(ω)) < 0.

Note that if the agent does not pay attention to an informative signal and simply

reports the prior, this corresponds to underreaction.

Our goal is to compare how a given level of representativeness θ and cognitive

imprecision λ generates differences in the level of over- and underreaction across

information environments. In order to do so, we need a measure that accounts for

variation in the objective expected movement. We measure the magnitude of reaction

by the difference between the objective and subjective expected movement divided

by the objective expected movement:

r(sj) ≡
(Ê(ω|sj)− E0(ω))− (EB(ω|sj)− E0(ω))

EB(ω|sj)− E0(ω)
=

Ê(ω|sj)− EB(ω|sj)
EB(ω|sj)− E0(ω)

. (8)

We refer to this as the overreaction ratio. By Definition 1 the agent overreacts to sj

if r(sj) > 0, underreacts if r(sj) ∈ [−1, 0), and wrong direction reacts if r(sj) < −1.

To glean intuition for how representativeness and cognitive imprecision impact the

overreaction ratio, consider a symmetric information environment (i.e., symmetric Ω

and p0). In this case, the overreaction ratio simplifies to

r(sj) = λrR(sj)− (1− λ), (9)

where rR(sj) ≡ (ER(ω|sj)− EB(ω|sj))/(EB(ω|sj)− E0(ω)) is the overreaction ratio

and ER(ω|sj) is the posterior expected state under no cognitive imprecision (i.e., with
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respect to pR).
26 Under a good news signal structure, representativeness overweighs

extreme states and rR(sj) > 0 for all θ > 0. Therefore, when there is no cognitive im-

precision, overreaction emerges: r(sj) > 0 when θ > 0 and λ = 1. In contrast, when

there is no representativeness, underreaction emerges: r(sj) = −(1 − λ) ∈ [−1, 0)

when θ = 0 and λ < 1. This highlights the opposing influences of representativeness

and cognitive imprecision: when rR(sj) > (1 − λ)/λ, representativeness dominates

and overreaction emerges, and otherwise, cognitive imprecision dominates and un-

derreaction emerges. Since (1 − λ)/λ is a positive constant and rR(sj) ranges from

0 to a large number depending on θ and the information environment, the direction

and magnitude of reaction varies across environments.27 Note that wrong direction

reaction does not arise in symmetric information environments (see Lemma 1 in

Appendix B).

Discussion. Our definition and measure of overreaction are based on the expected

state. This is consistent with both the finance and experimental literatures. The for-

mer typically studies asset prices and average forecasts, which are summary statis-

tics of the belief distribution similar in spirit to the expected state.28 The latter

typically compares the movement of subjective and objective beliefs in binary state

environments—which is equivalent to our comparison of expected states—and uses

so-called Grether regressions to measure over- or underreaction.29 As discussed fur-

ther in Appendix D.1, we developed the overreaction ratio in part because these

measures are difficult to implement in non-binary state settings.

Our measure satisfies several desirable properties. It is scale-invariant, in that

r(sj) stays constant when all states are scaled proportionally (e.g., doubled). The

same is not true for the numerator of r(sj), which is why the simple difference in

expected movement is not a good choice of measure. In environments in which our

model does not predict wrong direction reaction (e.g., symmetric environments), it

is equivalent to another natural choice of measure, which takes the absolute values of

the expected movements in Eq. (8). However, in environments where wrong direction

reaction arises, the latter measure does not distinguish between such movement in the

wrong direction and equal movement in the correct direction whereas our measure

does. Finally, it generates a complete order in the sense that any two posterior beliefs

26In a symmetric environment, E0(ω) = E(ω) = 1/2, where E(ω) is the expected state under p0.
Eq. (9) follows from plugging Ê(ω|sj) = λER(ω|sj) + (1− λ)E(ω) into Eq. (8).

27As θ approaches ∞ and EB(ω|sj)− E0(ω) approaches zero, rR(sj) approaches ∞.
28Our measure is closely linked to a common empirical test in the finance literature developed

by Coibion and Gorodnichenko (2015). They examine the correlation between forecast errors
and forecast revisions over time, where positive (negative) correlation corresponds to underreac-
tion (overreaction). In our model, the counterparts of forecast errors and forecast revisions are
EB(ω|sj)−Ê(ω|sj) and Ê(ω|sj)−E0(ω), respectively. It is straightforward to verify that if Ê(ω|sj)
moves in the same direction as EB(ω|sj), then r(sj) < 0 if and only if forecast errors and revisions

are negatively correlated, i.e. (EB(ω|sj)− Ê(ω|sj))(Ê(ω|sj)− E0(ω)) > 0.
29To establish this equivalence, we show that when Ω is binary, r(sj) = (p̂(ω1|sj) −

pB(ω1))/(pB(ω1|sj)− p0(ω1)), and similarly for ω2. See Appendix B for a proof.
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are comparable—in contrast to measures of overreaction that are based on the entire

posterior distribution and may be incomplete when there are more than two states.

2.3.2 Comparative Statics

We next derive comparative static predictions for how the overreaction ratio varies

with respect to state space complexity, signal diagnosticity, and prior concentration

and symmetry. Section 3.3 presents empirical results consistent with these predic-

tions. Throughout this section, when we compare two environments (Ω, p0) and

(Ω′, p′0), we let r(sj) denote the overreaction ratio for (Ω, p0) and r′(sj) analogously

for (Ω′, p′0).

Complexity of the State Space. To explore how complexity impacts belief move-

ment, we fix the dispersion of the state space—so that the most salient states are the

same across environments—and vary complexity by adding more interior states. Pre-

diction 1 shows that when the attentional distortion is sufficiently large, overreaction

increases as the state space becomes more complex.

Prediction 1 (Complexity). Consider two symmetric information environments

(Ω, p0) and (Ω′, p′0) with the same dispersion (i.e., ω1 = ω′
1 and ωN = ω′

N) and

uniform priors. If Ω′ is more complex than Ω, and every state in Ω′ \ Ω is more

interior than every state in Ω, then for sufficiently large θ, the agent overreacts more

in (Ω′, p′0) than (Ω, p0), r
′(sj) > r(sj) for sj ∈ S.

For example, for sufficiently large θ, the agent overreacts more in the four-

state environment Ω4 = {0.3, 0.4, 0.6, 0.7} than in the binary state environment

Ω2 = {0.3, 0.7}, and overreacts even more in the five-state environment Ω5 =

{0.3, 0.4, 0.5, 0.6, 0.7}.30 The intuition is as follows. Under a uniform prior, as com-

plexity increases, mass is shifted from extreme states to interior states. Since the

extreme states become less likely under the prior, the objective expected movement

is smaller in magnitude. However, because the agent’s mental representation neglects

interior states, her posterior belief continues to concentrate on extreme representa-

tive states, resulting in less of a reduction in magnitude of the subjective expected

movement.

The impact of increasing complexity on overreaction critically hinges on how the

addition of states changes the relative levels of representativeness. Such changes are

substantial when the additional states are distinct, but not when they are very similar.

For example, the overreaction ratio moves continuously in ε > 0 from Ω = {0.3, 0.7}
to Ω′ = {0.3, 0.3 + ε, 0.7 − ε, 0.7}, maintaining a uniform prior. At ε = 0, Ω′ =

{0.3, 0.3, 0.7, 0.7} is equivalent to Ω, and therefore, the two state spaces have equal

overreaction ratios. Therefore, the impact of increasing complexity is not determined

30Note that the agent also overreacts more in Ω3 = {0.3, 0.5, 0.7} than Ω2, but Ω3 is not directly
comparable to Ω4 or Ω5 because the states {0.4, 0.6} are not more interior than state {0.5}.
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by the number of new states per se, but by the number of new distinct states, as this

is what alters how much attention the agent channels towards representative states.31

Prediction 1 also holds in a representativeness-only model (θ > 0 and λ = 1),

but such a model predicts overreaction across all levels of complexity. This con-

trasts with our two-stage model, where the interaction between the two cognitive

mechanisms can generate underreaction in simple environments and overreaction in

complex environments.

Prior Concentration. We next explore how the concentration of the prior impacts

belief movement. Consider two symmetric information environments (Ω, p0) and

(Ω, p′0) with the same state space. We say that prior p′0 is more concentrated than

p0 if it assigns higher probability to interior states and lower probability to extreme

states: for some c ∈ (1/2, 1), p′0(ωi) ≥ p0(ωi) for all ωi ∈ [1− c, c] and p′0(ωi) ≤ p0(ωi)

for all ωi ∈ [0, 1−c]∪[c, 1], with at least one inequality strict. Prediction 2 establishes

that overreaction increases in the concentration of the prior.

Prediction 2 (Prior concentration). Consider two symmetric information environ-

ments (Ω, p0) and (Ω, p′0) with the same state space. If p′0 is more concentrated than

p0, then for sufficiently large θ, the agent overreacts more in (Ω, p′0) than in (Ω, p0),

r′(sj) > r(sj) for sj ∈ S.

The intuition behind Prediction 2 is similar to that of Prediction 1. The magnitude

of the objective expected movement decreases in the concentration of the prior, but

representativeness continues to generate overweighing of extreme states. This leads

to a smaller decrease in the magnitude of the subjective expected movement, and

therefore, more overreaction.

While a representativeness-only model predicts overreaction for all priors and a

cognitive-imprecision-only model predicts underreaction, our two-stage model allows

for overreaction to some priors and underreaction to others—including those that

are sufficiently diffuse. Specifically, it predicts a region where the two psychological

mechanisms act as cognitive complements—their interaction plays a critical role in

predicting whether over- or underreaction emerges in a given information environ-

ment. Prediction 6 in Appendix B formally highlights this cognitive complementarity.

31Indeed, Phillips and Edwards (1966) find significant underreaction in an experiment where
there are ten states but each of them takes one of two unique values. Enke and Graeber (2023)
find the same when duplicating one state in a binary state environment. Because duplicate states—
or states so similar that they are essentially duplicates—do not constitute distinguishable objects,
we conjecture that this manipulation does not increase representational complexity. People will
group redundant states when forming a mental representation and then further simplify via the
representativeness heuristic. See, for example, Evers, Imas, and Kang (2022) for evidence on how
agents simplify the evaluation of similar outcomes. It may, however, increase computational com-
plexity. Testing this prediction is outside the scope of the current paper, as our experiments focus
on information environments with easily distinguishable states.
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Signal Diagnosticity. To examine how signal diagnosticity impacts belief move-

ment, we consider the differential reaction to information as the signal becomes

(weakly) less diagnostic in all states—in other words, as all states move closer to 0.5.

Moving interior states closer to 0.5 has a similar impact to adding interior states—it

causes representativeness to generate a more distorted mental representation. The

impact of moving extreme states is more nuanced, as this involves changing the value

of the most representative state.

To illustrate this, consider information structure Ω3 = {x, 0.5, 1 − x} and a uni-

form prior, where x ∈ (0, 0.5). As x increases towards 0.5, the objective expected

movement decreases in magnitude, since the extreme states x and 1 − x are closer

to the prior expected state E0(ω) = 0.5. The subjective expected movement also

decreases in magnitude: representativeness causes the agent to overweigh x or 1− x,

which are moving closer to E0(ω). Increasing x results in a higher overreaction ra-

tio if the objective expected movement decreases more. This turns out to hold for

all values of x ∈ (0, 0.5) when the degree of representativeness is sufficiently high.

More generally, our next result shows that under a uniform prior, decreasing the

diagnosticity of the extreme states results in more overreaction for sufficiently large

θ if

W (Ω) ≡
∑

i∈{1,N}

(ωi − 0.5)2 −
∑

i ̸∈{1,N}

(ωi − 0.5)2 > 0. (10)

Note that W (Ω) > 0 for all symmetric state spaces with 2, 3, 4 or 5 states, which

includes all information structures we consider in the experiment (see Table D.1).

When W (Ω) > 0, the signal is more informative about extreme states and less

informative about interior states; therefore, the objective posterior attaches higher

probability to an extreme state relative to interior states. This makes the objective

expected movement more sensitive to the values of the extreme states.32

Prediction 3 (Diagnosticity). Consider two symmetric information environments

(Ω, p0) and (Ω′, p′0) with the same complexity, uniform priors, and W (Ω) > 0 and

W (Ω′) > 0. If Ω′ is less diagnostic than Ω, d′i ≤ di for all i = 1, ..., N with at

least one inequality strict, then for sufficiently large θ, the agent overreacts more in

(Ω′, p′0) than (Ω, p0), r
′(sj) > r(sj) for sj ∈ S.

For example, consider Ω4 = {x, y, 1 − y, 1 − x} with x ∈ (0, 0.5) and y ∈ (x, 0.5).

Prediction 3 implies that the agent overreacts more or underreacts less as both x and

y move closer to 0.5.

Analogous to Prediction 6, our two-stage model predicts three regions as we

manipulate the signal diagnosticity, including a cognitive complementarity region in

32When W (Ω) < 0, the objective expected movement is less sensitive to changes in the ex-
treme states. In this case, decreasing the diagnosticity of extreme states reduces the magnitude
of the subjective expected movement more than the objective expected movement, leading to less
overreaction.
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which an agent underreacts to sufficiently precise signals and overreacts to less precise

signals (see Prediction 7 in Appendix B).

Prior Symmetry. Finally, we consider information environments with asymmet-

ric priors. We restrict attention to binary state spaces where it is straightforward

to manipulate the symmetry of the prior; in this case, an asymmetric prior corre-

sponds to p0(ω1) ̸= p0(ω2). In such environments, the two signal realizations are no

longer equally likely ex-ante. Reaction may differ based on whether the agent ob-

serves the more likely expected—confirmatory—signal realization, or the less likely

surprising—disconfirmatory—signal realization. For example, if the prior assigns a

higher probability to state ω1, then a signal realization is confirmatory if it is more

likely under ω1 than ω2, and is disconfirmatory if it is more likely under ω2 than ω1.

Definition 2. Consider an information environment (Ω, p0) with a binary symmet-

ric state space. A signal realization sj is confirmatory if (i) p0(ω1) > p0(ω2) and

π(sj|ω1) > π(sj|ω2), or (ii) p0(ω1) < p0(ω2) and π(sj|ω1) < π(sj|ω2). A signal real-

ization sj is disconfirmatory if (iii) p0(ω1) > p0(ω2) and π(sj|ω1) < π(sj|ω2), or (iv)

p0(ω1) < p0(ω2) and π(sj|ω1) > π(sj|ω2).

Note that in the case of a symmetric prior p0(ω1) = p0(ω2), a signal realization is

neither confirmatory nor disconfirmatory.

The two-stage model generates a rich set of predictions about the reaction to

confirmatory versus disconfirmatory information. If the information is surprising,

then it predicts overreaction to imprecise signals and underreaction to precise ones.

If the information is expected, the model predicts a non-monotonicity with respect

to diagnosticity: when the signal is very precise or relatively imprecise, it predicts

underreaction, while for intermediate precision, overreaction can emerge. Impor-

tantly, the model also predicts that people may even react in the wrong direction

to a confirmatory signal when it is very imprecise or cognitive imprecision is high

enough.

Prediction 4 (Asymmetric Prior). Consider an information environment (Ω, p0)

with a binary symmetric state space, an asymmetric prior, and diagnosticity d, and

suppose θ > 0 and λ < 1.

(i) There exists cutoff c1 ∈ (0.5, 1) such that following a disconfirmatory signal

realization, the agent overreacts if d ∈ (0.5, c1) and underreacts if d ∈ (c1, 1).

(ii) There exist cutoffs 0.5 < c2 ≤ c3 ≤ c4 ≤ 1 such that following a confirmatory

signal realization, the agent reacts in the wrong direction when d ∈ (0.5, c2),

underreacts when d ∈ (c2, c3) ∪ (c4, 1) and overreacts when d ∈ (c3, c4). If

cognitive imprecision is sufficiently low (high λ), c2 < 1 so the underreaction

region exists, and if representativeness is sufficiently high (large θ), c3 < c4 so

the overreaction region exists. If c3 < c4, then c2 < c3 and c4 < 1.
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Cognitive imprecision drives wrong direction reaction to confirmatory signals.

Therefore, for intuition, consider the cognitive-noise-only model. In this case, the

subjective expected state is equal to a weighted average of the objective expected

state and the cognitive default, Ê(ω|sj) = λEB(ω|sj) + (1− λ)E(ω), where E(ω) =

0.5. Wrong direction reaction can arise when EB and E are on opposite sides of the

prior expected state E0—which can only occur for a confirmatory signal. Suppose the

prior places more weight on ω2, resulting in prior E0(ω) > 0.5. The objective expected

state increases following confirmatory s2, EB(ω|s2) > E0(ω). Cognitive imprecision

compresses the subjective expected state towards the cognitive default, which is less

than the prior, E(ω) < E0(ω). For a sufficiently imprecise signal (low diagnosticity),

EB(ω|s2) is close to E0(ω) and this results in wrong direction reaction: Ê(ω|s2) ≈
λE0(ω) + (1 − λ)E(ω) < E0(ω). For a more precise signal (higher diagnosticity),

Ê(ω|s2) remains above E0(ω) but below EB(ω|s2), resulting in underreaction.

Cognitive imprecision also generates overreaction to disconfirmatory signals. Again

considering the cognitive-noise-only model, following disconfirmatory s1, the objec-

tive expected state decreases, EB(ω|s1) < E0(ω). For a sufficiently imprecise signal,

it remains above the cognitive default, E(ω) < EB(ω|s1). Relative to EB(ω|s1),
cognitive imprecision compresses Ê(ω|s1) towards E(ω), decreasing it more and gen-

erating overreaction. As the signal becomes more precise, EB(ω|s1) decreases below
the cognitive default, and cognitive imprecision instead increases Ê(ω|s1), resulting
in underreaction.

When the agent is also subject to representativeness (θ > 0), she overreacts more

to both signal realizations. If representativeness is strong enough, then in addition

to overreacting to imprecise disconfirmatory signals, the agent may also overreact to

intermediate precision confirmatory signals.

Discussion. As discussed in the intuition following each result, when the signal has

a good news structure, representativeness is a key driver of overreaction, and when

the information environment is symmetric, cognitive imprecision is a key driver of un-

derreaction. However, there are also environments in which representativeness drives

underreaction and cognitive imprecision drives overreaction. Prediction 4 demon-

strates that cognitive imprecision can generate overreaction in asymmetric environ-

ments. Representativeness can generate underreaction when there is not a good news

signal structure.

Aside from the final result, we focus on symmetric information environments

as this case yields tractable predictions. The insights generally continue to hold in

asymmetric environments, albeit with more cumbersome notation. We do not explore

these environments here for brevity.
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2.4 State-by-State Predictions

We next investigate which states are overweighed versus underweighed, and again

show that the two-stage model generates distinct predictions from either stage on

its own. An agent overweighs state ωi if her subjective posterior assigns a higher

probability to it than the objective posterior, with the opposite for underweighing.

The definition with respect to sets of states is analogous.

Definition 3. An agent overweighs ωi if p̂(ωi|sj) > pB(ωi|sj) and underweighs it

if p̂(ωi|sj) < pB(ωi|sj). An agent overweighs set of states Ωi ⊂ Ω if p̂(Ωi|sj) >

pB(Ωi|sj) and underweighs it if p̂(Ωi|sj) < pB(Ωi|sj).

Note that if a state or set of states is overweighed, then at least one other state must

be underweighed, and vice versa. This implies that in binary state environments, it

is not possible to have both states simultaneously under- or overweighed.

Let ωR(sj) denote the most representative state for signal realization sj (e.g., ω1

for s1 and ωN for s2) and analogously, ωNR denote the least representative state. The

following result establishes that there is a set of parameters (θ, λ) for which the agent

overweighs both the most and least representative state. This prediction uniquely

stems from the interaction between channeled attention and cognitive imprecision:

it cannot arise when only one of these mechanisms is present. In contrast, for suffi-

ciently low cognitive imprecision and high representativeness, the agent overweighs

the most representative state and underweighs the least, as in the representativeness-

only model, and for sufficiently high cognitive imprecision and low representativeness,

the agent underweighs the most representative state and overweighs the least, as

in the cognitive-imprecision-only model. Finally, representativeness also drives the

agent to underweigh the set of interior states.

Prediction 5. Consider a symmetric information environment (Ω, p0) with a uni-

form prior. For each θ > 0, there exist cutoffs 0 < λ1(θ) ≤ λ2(θ) < 1, such that:

(i) Cognitive-imprecision-dominant: for λ ∈ [0, λ1(θ)), the agent underweighs ωR

and overweighs ωNR for all sj ∈ S;
(ii) Cognitive complementarity: for λ ∈ (λ1(θ), λ2(θ)), the agent overweighs ωR

and ωNR for all sj ∈ S;
(iii) Representativeness-dominant: for λ ∈ (λ2(θ), 1], the agent overweighs ωR and

underweighs ωNR for all sj ∈ S.
When |Ω| > 2, λ1(θ) < λ2(θ) and when |Ω| = 2, λ1(θ) = λ2(θ). Moreover, for each

θ > 0 and sj ∈ S, the agent underweighs the set of interior states ΩI = Ω\{ωR, ωNR}
when λ > 0 and neither under- nor overweighs ΩI when λ = 0.

The intuition is as follows. In the first stage, representativeness prompts the

agent to overweigh the most representative state and underweigh the least. In

the second stage, cognitive imprecision acts as a counteracting force by pulling be-

liefs towards the uniform cognitive default. When cognitive imprecision is low (the
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Figure 1. Illustration of Prediction 5 for Ω = (0.1, 0.3, 0.5, 0.7, 0.9)

representativeness-dominant region), the agent continues to overweigh ωR and un-

derweigh ωNR. In contrast, when cognitive imprecision dominates (the cognitive-

imprecision-dominant region), the pattern is reversed.33 Most importantly, in en-

vironments with at least three states, there is an intermediate range of represen-

tativeness and cognitive imprecision (the cognitive complementarity region) where

the agent overweighs both ωR and ωNR.
34 Representativeness pulls mass towards

the most representative state from multiple other states, and as a result, directs

more probability mass to the most representative state than away from the least

representative state. Hence, moderate levels of cognitive imprecision reverse the

representativeness-driven underweighing for the least representative state but not

the most representative state. Notably, as discussed above, the interaction between

representativeness and cognitive imprecision generates this pattern.

Interior states are underweighed overall, as representativeness moves more mass

to ωR than away from ωNR. Therefore, while individual interior states may be over-

weighed or underweighed, depending on their representativeness, as a whole this

excess mass must be moved from interior states. This contrasts with the cognitive-

imprecision-only model (λ = 0), where excess weight on interior states averages to

zero—as a set, they are neither under- nor overweighed.35

33This is also the case in the more flexible model of cognitive imprecision in Augenblick et al.
(2022), as we show in Appendix C.

34Such a region cannot exist in binary state environments, as overweighing one state implies un-
derweighing the other. This is another reason why restricting attention to binary state environments
does not provide a complete picture of belief formation.

35The predictions for individual interior states are dependent on the details of the information
environment. When representativeness is sufficiently strong, the agent channels most attention
to the most representative state and underweighs all interior states, even relatively representative
states that are more likely than average to generate a given signal realization. In this case, cognitive
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Fig. 1 illustrates the three regions for an information environment with five states.

As shown in the figure, our parameter estimates from Section 3.2 fall in the cognitive

complementarity region for this information environment.

Comparative static predictions on how properties of the information environment

impact over- versus underweighing of individual states are difficult to derive, as vary-

ing these properties impacts both objective beliefs and the impact of each mechanism

on subjective beliefs. This motivates why we focus on the overreaction ratio for such

comparative statics, as this measure is normalized to parse out differences in objective

belief movement across environments.

3 Empirical Investigation

In this section, we test the predictions of our framework in a controlled experiment.

3.1 Experimental Set-up

Method. We recruited 3,856 participants from the Prolific crowdsourcing platform

(48% female, 39 years average age).36 They first had to pass an attention check before

reading any experimental instructions. Those who did not pass did not proceed to

the rest of the study, we did not collect data from them, and they are not included in

the participant total. After passing the initial check, participants were told that in

addition to the base payment of $2, they could earn two additional bonus payments.

First, they earned $1 for correctly answering a comprehension check that followed the

instructions. Second, they earned $10 if their response to a randomly chosen belief

elicitation question was within 3% of the objective Bayesian posterior.37 We used

this incentive procedure as opposed to more complex mechanisms (e.g., quadratic or

binarized scoring rules) because recent evidence shows that these mechanisms can

systematically bias truthful reporting.38

Design. After the initial attention check, participants read the experimental in-

structions that included the following description of the information environment:

There is a deck of 100 cards, where each card has the number of a bag

written on it, e.g., ‘Bag 1’ or ’Bag 2’. Each possible bag has 100 balls,

which are either red or blue. The computer will randomly draw a card from

imprecision can actually counteract this underweighing: if the subjective posterior assigns less mass
to an interior state than the cognitive default, then cognitive imprecision pulls the belief back
towards the cognitive default, mitigating the underweighing of this state. This demonstrates that
cognitive imprecision does not always contribute to the underweighing of more representative states.

36Preregistration materials are available here: https://aspredicted.org/LTJ CS7 and https://
aspredicted.org/Q77 3LG.

37See Enke, Graeber, and Oprea (2023) for similar use of the objective posterior as the incen-
tivized benchmark.

38Danz, Vesterlund, and Wilson (2022) show that the binarized scoring rule leads to conservatism
in elicited beliefs and greater error rates compared to simpler mechanisms. They argue that incen-
tives based on belief quantiles—such as the one we use here—will result in more truthful reporting
and lower cognitive burden.
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the deck to select a bag, then randomly draw one ball from the selected bag

and show it to you.

Participants next completed several comprehension questions, and then proceeded

to a series of inference tasks. Each trial involved a new information environment, a

randomly selected bag, and a randomly drawn ball. The participant was told the

number of bags (the states), how many cards corresponded to each bag (the prior),

and how many red versus blue balls each bag contained (the information structure).

After observing the color of the randomly drawn ball (the signal realization, with

s1 = b corresponding to blue and s2 = r corresponding to red), the participant

reported how likely she thought that each bag was selected (i.e., Bag 1, Bag 2, etc.)

by reporting a percentage from 0 to 100.39 We required these percentages to add

up to 100 across all possible bags. After reporting this probability assessment, the

participant proceeded to the next trial. Each participant completed 8 to 15 inference

tasks as described below, and then answered a set of basic demographic questions

before exiting the study. See Appendix E for the full instructions.

This “bookbag-and-poker-chip” design (Edwards 1968) is used extensively in the

literature—typically with a simple binary state space. It cleanly maps into the in-

formation environment in our model. The number of bags corresponds to the size of

the state space, the number of cards for each bag corresponds to the objective prior,

and the number of red versus blue balls in each bag corresponds to the information

structure. As in Section 2, we set the share of red balls as the value of the state cor-

responding to a given bag, ωi = Pr(r|ωi). Fig. 2 depicts an information environment

with 3 states, with Bag 1 as state ω3 = 0.6, Bag 2 as ω2 = 0.5, and Bag 3 as ω1 = 0.4,

a prior concentrated on the interior state (Bag 2), and a signal diagnosticity 0.6 in

Bags 1 and 3 and 0.5 in Bag 2.

It is straightforward to manipulate the parameters of the information environ-

ment. We manipulated four factors to test the predictions of our model:

• Complexity of State Space: The number of bags.

• Information Structure: The number of red versus blue balls in a given bag.

• Prior Concentration: In a setting with three bags, the number of cards

corresponding to bags with a more extreme distribution of ball colors (i.e.,

more extreme states) versus a more moderate distribution (i.e., more interior

states).

39To ensure that our results were not driven by the procedure of entering beliefs for every
bag rather than the expectation, we ran a variation where participants reported their expectation
E(ω|sj) of the number of red balls directly. Importantly, they were aware of the complexity of the
information environment and were instructed to consider each potential state (i.e., Bag) separately
before reporting their expectation. This did not significantly change the results (see Appendix D.5).
We did not use this elicitation method for the main analysis because it would prevent us from
studying belief-updating state by state, which is critical for testing our model’s predictions.
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Figure 2. Experimental design for 3-state treatment

• Prior Symmetry: In a setting with two bags, the prior probability of one

versus the other bag.

Table D.1 in Appendix D.1 outlines the set of parameter combinations that we used.

As in the model, we focused on symmetric information structures (e.g., if there is a

bag with 40 red balls, there is also a bag with 60 red balls) and a good news signal

structure.40 The most “representative” bag was Bag 1 (state ωN) or Bag N (state

ω1), depending on whether a red or blue ball, respectively, was drawn.

Participants were randomized into a complexity condition—2, 3, 4, 5 or 11 states.

Those in the 3-state condition were also randomized into one of three prior concentra-

tion conditions—uniform, concentrated, or dispersed; those in the 2-state condition

were randomized into one of two prior symmetry conditions. Participants in the 4-,

5-, and 11-state conditions all faced a uniform prior. Participants then completed a

maximum of 15 trials randomly drawn from the set of possible trials for the respective

complexity and prior condition.41 Each complexity and prior condition had at least

200 participants.

To measure the cognitive default prior p0, we ran a version of the 3-state and 11-

state uniform prior parameterizations where participants (N = 149) were presented

with the basic structure of the experiment but not the specific parameters of the

information environment.42 Participants were then asked, based on the information

40As discussed in Section 2, the majority of prior experimental work uses this form of informa-
tion structure, and it mirrors many real-world settings (e.g., equity markets and many economic
indicators such as GDP), where the expectation of the relevant economic variable monotonically
increases in the signal. Section 6.1 reports results from an informational environment that does not
have a good news signal structure.

41For all conditions except the 2-state asymmetric prior, the total set of possible trials is equal
to the product of the number of information structures and signal realizations (always 2). For the
2-state asymmetric prior condition, the total set of possible trials is equal to the product of the
number of priors (2), information structures and signal realizations (2).

42Namely, participants were told that there were three or eleven potential bags but were not told
the composition of bags in the deck or the composition of balls in each bag.
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provided, how many cards of each bag type were most likely to be in the deck. In

addition to a $1 completion fee, they received a $1 bonus if a randomly-selected guess

was within 3% of the actual number of cards corresponding to that bag. Across both

conditions, a joint F-test cannot reject that participants assigned the same probability

to each bag. This is consistent with a uniform cognitive default, i.e., the “ignorance

prior.”

Analysis. We conduct three types of analyses on the experimental data. First, we

structurally estimate the two model parameters, θ and λ. Next, we calculate par-

ticipants’ subjective expected state from their reported posterior, and compare this

to the objective posterior expected state using the overreaction ratio r(s) defined in

Section 2 (Eq. (8)). Finally, we compare participants’ reported posterior belief about

each state to the objective Bayesian posterior. These analyses are complementary:

comparing the subjective and objective expected movement in beliefs allows us to

examine over- versus underreaction as a function of the information environment,

the state-by-state analysis demonstrates additional unique predictions of our model

(e.g., how the two psychological mechanisms interact) and addresses potential issues

related to the overreaction ratio r(s) (see Appendix D.1 for discussion), and the

structural estimation lets us compare the observed patterns of belief updating in the

data to the best-fit model prediction.

Per our pre-registration, unless otherwise noted, we exclude trials in which par-

ticipants react in the wrong direction (i.e., update in the opposite direction from

the objective posterior). When such trials are excluded, a positive (negative) r(s)

corresponds to overreaction (underreaction). Our pre-registration expressed the over-

reaction ratio in terms of the absolute value of the subjective and objective expected

movement. This is equivalent to Eq. (8) when excluding wrong direction reaction

observations.

It is worth noting that experimental studies on belief-updating often measure

over- and underreaction by running a so-called Grether regression (Grether 1980).

Due to our focus on multi-state settings, the rich set of model predictions cannot be

tested using Grether regressions. See Appendix D.1 for further discussion.

3.2 Structural Estimation

We first use the experimental data to estimate the parameters of the belief-updating

model, following the literature on behavioral structural estimation (e.g., DellaVigna

(2018) and Bordalo et al. (2020)) as outlined in Appendix D.2. The estimated param-

eter values of θ = 0.85 and λ = 0.70 suggest significant attentional and processing

distortions. Both estimates are significantly different from the Bayesian benchmark

of θ = 0 and λ = 1. Our parameter estimates are qualitatively similar to others in

the literature. Enke and Graeber (2023) estimate cognitive noise in a simple 2-state

environment and obtain an estimate of λ close to 0.5. Bordalo et al. (2019) examine
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forecasters’ expectations about a series of economic indicators and find that θ ranges

from 0.3 to 1.5, with an average of 0.6. It is noteworthy that we obtain a qualitatively

similar value in a very different setting.

3.3 Over- versus Underreaction

We next test our comparative static predictions on how properties of the information

environment impact the extent of over- or underreaction, as measured by the over-

reaction ratio. In the experiment, the numeric value of a state corresponds to the

fraction of red balls in the bag. The expected state is therefore equal to the expected

probability of drawing a red ball. In each trial, we calculate (i) the participant’s

expected probability of drawing a red ball given their reported posterior belief, (ii)

the objective prior expected probability of drawing a red ball, and (iii) the objective

posterior expected probability of drawing a red ball. We use these statistics to com-

pute the overreaction ratio r(s) as defined in Eq. (8) for each participant, and use

the average of the overreaction ratios across all participants in a given information

environment to measure over- and underreaction. For convenience, throughout this

and the following section we use d to denote the signal diagnosticity associated with

the extreme states, d ≡ d1 = dN .

Complexity. To test Prediction 1, we compare the overreaction ratio across uni-

form prior environments that vary in complexity while holding fixed the dispersion

of the state space (i.e., the highest and lowest states). In simple 2-state environ-

ments, we replicate the finding of underreaction from the experimental literature:

on average, participants’ overreaction ratio is negative across all the information

environments in our experiment (r < 0, p < .001).43 This finding also holds for

individual information environments. Fig. 3a plots the overreaction ratio for each

diagnosticity and signal realization. The x-axis corresponds to the probability of the

realized signal in state ωN , which ranges from 0.6 to 0.9 for a red ball and from 0.1

to 0.4 for a blue ball depending on the diagnosticity.44 As can be seen in the figure,

we observe significant underreaction to both signal realizations across nearly all envi-

ronments in the 2-state treatment. This is consistent with the evidence summarized

in Benjamin (2019), which documents systematic underreaction in lab experiments

that overwhelmingly use binary state spaces.

Increasing the complexity of the state space reverses this result. Strikingly, adding

even a single state—going from 2 to 3 states—leads participants to report posterior

beliefs that move significantly more than the objective benchmark, resulting in a

positive overreaction ratio (r > 0, p < .001). As illustrated in Fig. 3a, we observe

43This p-value and others reported in the text are from a one-sample t-test against 0, unless
otherwise noted

44Due to the symmetry of the information structure, when a blue ball occurs with probability x
in state ωN , then a red ball occurs with probability 1− x. Therefore, on the x-axis of Fig. 3a, 0.1
and 0.9 correspond to blue and red signal realizations, respectively, from the information structure
with diagnosticity 0.9, and so on.
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(a) Overreaction ratio
(b) Difference in share of overreaction
versus underreaction

Figure 3. Complexity increases overreaction. Each data point aggregates all uniform

prior environments of a given complexity—by diagnosticity and signal realization in Panel (A) and

across all diagnosticities and signal realizations in Panel (B).

significant overreaction to both signal realizations across all environments in the 3-

state treatment.

This pattern continues in more complex settings. We compare each 2-state en-

vironment to 4-state environments with two additional interior states and 5-state

environments with three additional interior states.45 Regressing the overreaction ra-

tio on dummies corresponding to the 4-state and 5-state treatments, we find that

the overreaction ratio is significantly higher in the complex 4 and 5-state treatments

compared to the simple 2-state treatment. Moreover, the overreaction ratio is sig-

nificantly higher in the 5-state treatment than the 4-state treatment (p < .01), as

predicted. A similar pattern of overreaction increasing with complexity emerges when

we control for the information structure by adding dummies for each diagnosticity.

See Table D.5 in Appendix D.3.1 for these results.

Finally, we study an 11-state treatment to examine belief-updating with “many”

states. We find significant overreaction r > 0 (p < .001) and the highest overreaction

ratio across all complexity treatments (although this is not a direct test of Prediction 1

since the state space dispersion differs).

As an alternative measure of overreaction, we compute the difference between the

fraction of trials with overreaction versus underreaction; this measure is used in prior

work e.g., Fan, Liang, and Peng (2023). A positive value indicates more trials with

overreaction and a negative value indicates the opposite. As shown in Fig. 3b, we

again find that participants tend to underreact in the 2-state treatment but overreact

in treatments with 3 or more states. Together, these results provide strong support

for Prediction 1.

45We do not have a prediction for how the 3-state treatment compares to the 4-state and 5-state
treatments because the latter do not add interior states to the former as required for Prediction 1.
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Figure 4. Overreaction increases in prior concentration. Each data point aggregates all

3-state environments of a given prior by diagnosticity and signal realization.

Prior Concentration. To test Prediction 2, we examine how the overreaction ra-

tio varies with the concentration of the prior. We focus on 3-state environments as

this is the minimum number of states needed to manipulate the prior concentration.

We varied the prior from a diffuse one (0.4, 0.2, 0.4) that placed twice as much mass

on the extreme states as the interior state, to a uniform one (0.33, 0.34, 0.33), to a

concentrated one (0.25, 0.50, 0.25) that placed twice as much mass on the interior

state as the extreme states. Consistent with Prediction 2, we observe significantly

more overreaction as the prior becomes more concentrated: regressing the overreac-

tion ratio on dummies for each prior, we find that participants overreact significantly

more when the prior is concentrated and significantly less when the prior is diffuse

(Table D.6 in Appendix D.3.1). As shown in Fig. 4, this holds for both signal real-

izations across all information environments—where again the x-axis corresponds to

the probability of the realized signal in state ωN , ranging from 0.6 to 0.9 for red and

0.1 to 0.4 for blue. Taken together, this provides strong support for Prediction 2.

At high diagnosticities, the data matches the cognitive complementarity region

outlined in Prediction 6: significant underreaction emerges for the diffuse prior and

significant overreaction emerges for the more concentrated priors at diagnosticities

d = 0.8 and 0.9 (0.2/0.8 and 0.1/0.9 on the x-axis), as shown in Fig. 4. In contrast,

at low diagnosticities, the data is consistent with the representativeness-dominant re-

gion outlined in Prediction 6: significant overreaction emerges for all three priors at

diagnosticities d = 0.6 and 0.7 (0.3/0.7 and 0.4/0.6 on the x-axis). Indeed, consistent

with this finding, our structural estimates of θ and λ lie in the cognitive complemen-

tarity region for d = 0.8 and 0.9 and the representativeness-dominant region for

d = 0.6 and 0.7 (see Fig. B.1 in Appendix B). Taken together, this provides further

evidence for how channeled attention and cognitive imprecision interact to generate

distinct predictions on how the emergence of over- versus underreaction varies with

the learning environment.
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Figure 5. Overreaction in asymmetric simple environments. Each data point aggregates

all 2-state environments by diagnosticity and signal realization.

Signal Diagnosticity. To test Prediction 3, we examine how the overreaction ra-

tio varies with signal diagnosticity. Fig. 4 provides support for the prediction in the

3-state uniform prior environments: there is significantly higher overreaction to noisy

signals than precise signals, with the highest level of overreaction as d approaches 0.5

(0.5 on the x-axis) and the lowest as d approaches 0.9 (0.1/0.9 on the x-axis). Our ob-

servation of overreaction at all the diagnosticities in our experiment is consistent with

Prediction 7: the structural estimates of θ and λ lie in the cognitive complementarity

region near the border with the representativeness-dominant region, predicting over-

reaction for all but the highest diagnosticities (see Fig. B.2 in Appendix B). While

Predictions 3 and 7 are derived for a uniform prior, similar patterns hold for the

diffuse and concentrated priors. As shown in Fig. 4, overreaction is highest for noisy

signals, and in the case of a diffuse prior, the cognitive complementarity generates

underreaction to precise signals along with overreaction to noisy signals.

We also find evidence consistent with Prediction 3 in the other complexity treat-

ments. Table D.7 in Appendix D.3.1 presents a regression analysis of the overreaction

ratio on signal diagnosticity for each complexity treatment. Consistent with the pre-

diction, there is progressively less overreaction as d increases and the signal is more

precise. For example, in the 5-state treatment (Column 4), the overreaction ratio

decreases by 0.56 as d increases from 0.6 to 0.9.46

Prior Symmetry. Finally, we examine how the overreaction ratio varies with the

symmetry of the prior and the type of signal realization—confirmatory, disconfirma-

tory, or neutral. We focus on 2-state environments and compare an asymmetric prior

(0.3, 0.7) or (0.7, 0.3) to a symmetric prior (0.5, 0.5).

46Edwards (1968) and Augenblick et al. (2022) find overreaction to extremely noisy signals in a
2-state environment. We ran a version of the 2-state treatment with d = 0.51 and also find evidence
for overreaction to this very noisy signal (r = 0.08, p < .001), although to a lesser extent than in
the more complex environments. This result is not included in the figures because we did not run
this signal diagnosticity in other complexity or prior information environments.
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Aggregating across priors and signal types, we continue to observe significant

underreaction to precise signals but overreaction to imprecise signals, as shown in

Fig. 5. This overreaction is driven by responses to “surprising” disconfirmatory

signal realizations. Table D.8 in Appendix D.3.1 regresses the overreaction ratio on

signal type. It shows that participants overreact significantly more to disconfirmatory

realizations and significantly less to “expected” confirmatory realizations, relative to

neutral realizations.47 It is notable that overreaction emerges even in a simple 2-state

environment.

Importantly, Prediction 4 predicts significant heterogeneity in belief-updating by

signal type and diagnosticity. Given that it also predicts wrong direction reaction to

some signals, we include wrong direction observations in our analysis (recall that, as

per the pre-registration, they were dropped in previous analyses). Fig. 6a shows that

the data is consistent with the prediction for both confirmatory and disconfirmatory

realizations. We observe underreaction to confirmatory realizations when the signal

is precise (d = 0.9, which corresponds to 0.1/0.9 on the x-axis) and wrong direction

reaction when the signal is more imprecise (d = 0.6 and 0.7). In contrast, we observe

less underreaction or even overreaction to disconfirmatory realizations: overreaction

emerges at low signal diagnosticities (d = 0.6 and 0.7) and underreaction emerges at

high ones (d = 0.8 and 0.9).48 A regression analysis shows that indeed, relative to a

neutral realization, the overreaction ratio is lower for confirmatory realizations and

increasing in diagnosticity, while the overreaction ratio is higher for disconfirmatory

realizations but decreasing in diagnosticity (Table D.12 in Appendix D.3.2).

Finally, we explore whether people are more likely to exhibit wrong direction

reaction to confirmatory realizations relative to other signal types. Consistent with

Prediction 4, we observe a significant difference: while wrong direction reaction occurs

relatively infrequently following neutral and disconfirmatory realizations, it occurs

significantly more often following confirmatory realizations—nearly 30% of the time,

which is almost three times higher than the other cases (see Fig. 6b). Importantly,

this incidence of wrong direction reaction is not arbitrary noise (e.g., inattentive

subjects), but is predicted by our model.

Robustness. As discussed above, we drop wrong direction observations from all

analyses except for the prior symmetry. Appendices D.3.2 and D.3.3 replicate the

regression results and figures for each of the other analyses in this section including

wrong direction observations. The results do not meaningfully change.

47Under prior (0.3, 0.7), a red ball is confirmatory and a blue ball is disconfirmatory, with the op-
posite under prior (0.7, 0.3). Under a uniform prior, both red and blue balls are neutral realizations
(neither confirmatory nor disconfirmatory).

48For the sake of comparability with the other analyses, Fig. D.2 in Appendix D.3.3 replicates
Fig. 6a excluding wrong direction observations.
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(a) Overreaction ratio (b) Share of wrong direction reaction

Figure 6. Reaction varies by signal type. Both figures include wrong direction reaction

observations. In Panel (A), each data point aggregates all 2-state environments by diagnosticity

and signal type. In Panel (B), each bar aggregates all 2-state environments by signal type.

3.4 State-by-State Analysis

We next examine whether participants over- or underweigh a state by comparing

the difference between the subjective and objective posterior belief at specific states.

Recall that overweighing (underweighing) corresponds to a subjective posterior that

places more (less) weight on a state or set of states than the objective posterior.

We focus on states where our two-stage model makes a distinct theoretical predic-

tion; from Prediction 5, these correspond to the most representative state, the least

representative state, and the set of intermediate-representative states.

Fig. 7a plots the difference between participants’ average subjective posterior

and the objective posterior, aggregated across all 2, 3, 4, and 5-state uniform prior

environments used in the experiment. As shown in the figure, participants over-

weigh both the most and least representative states—with the most representative

state overweighed to the largest extent—and underweigh the set of intermediate-

representative states.

Notably, this matches the prediction in the cognitive complementarity region of

our two-stage model: as outlined in Prediction 5, the interaction between salience-

channeled attention and cognitive imprecision leads the most salient state to be

overweighed the most, the least salient state to be overweighed the second most, and

the middle states to be underweighed. Fig. 7b plots this model prediction using the

structural estimates of θ and λ from our data, computing the difference between the

predicted subjective posterior and the objective posterior across the same information

environments as in Fig. 7a.

In contrast, the observed pattern of over- and underweighing is distinct from

the prediction of each stage of our model in isolation.49 As plotted in Fig. 7c,

49It is also distinct from the alternative and more flexible versions of cognitive imprecision, as
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(a) Data (b) Two-Stage Model

(c) Representativeness-Only Model (d) Cognitive-Imprecision-Only Model

Figure 7. Over- and Underweighing by Representativeness of State. Each bar ag-

gregates both signal realizations for all 2, 3, 4, and 5-state uniform prior environments; the Middle

State bar sums across all interior states. Panels (B)-(D) are weighted to match the share of ex-

perimental observations in each environment and based on structural estimates of θ and λ: (B)

θ = 0.85, λ = 0.7; (C) θ = 0.85, λ = 1; (D) θ = 0, λ = 0.7. Beliefs are measured as a percentage

from 0 to 100.

representativeness-channelled attention alone predicts that the least representative

state will be underweighed the most. On the other hand, as plotted in Fig. 7d,

cognitive imprecision alone predicts that the most representative state will be un-

derweighed the most, and in aggregate the middle states will be neither over- nor

underweighed. Neither pattern is consistent with our data.

Aggregating across information environments masks interesting heterogeneity with

respect to signal informativeness. Consider the least representative state: at the

estimated values of θ and λ, the two-stage model predicts underweighing in envi-

ronments with an imprecise signal and overweighing in environments with a precise

signal (Fig. 8c). When the signal is imprecise (low diagnosticity), the objective poste-

rior is close to the cognitive default; cognitive imprecision has little room to generate

overweighing and representativeness dominates, leading to underweighing. For pre-

cise signals (high diagnosticity), the effect reverses: the objective posterior is close

explored in Appendix C.
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(a) Data: Least Rep. State (b) Data: Most Rep. State

(c) Two-Stage Model: Least Rep. State (d) Two-Stage Model: Most Rep. State

Figure 8. Over- and Underweighing by Diagnosticity. Each bar aggregates both signal

realizations for all uniform prior 2, 3, 4, and 5-state environments of diagnosticity d. Panels (C) and

(D) are weighted to match the share of experimental observations in each environment and based

on structural estimates θ = 0.85 and λ = 0.7. Beliefs are measured as a percentage from 0 to 100.

to zero and representativeness has little room to generate underweighing; cognitive

imprecision dominates, leading to overweighing. This pattern is borne out in the

experimental data (Fig. 8a).

On the other hand, the two-stage model predicts the overweighing of the most

representative state across all diagnosticities, with the most overweighing for envi-

ronments with intermediate precision (Fig. 8d). This is because representativeness

leads to a larger distortion of the most representative state, as it pulls more weight

to this state than from the least representative state. Again this pattern matches the

data (Fig. 8b).50

Overall, our parameter estimates generally fall in the cognitive complementarity

region of Prediction 5 for individual information environments as well: they are in

this region for 15 of the 24 environments with 3, 4, or 5 states that we consider

in the experiment (recall that the region does not exist in 2-state environments, as

overweighing one state implies underweighing the other). This suggests that the

50As in the aggregate data, the observed pattern of over- and underweighing by diagnosticity is
distinct from the prediction of each stage of our model in isolation ( Fig. D.3 in Appendix D.4).
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interaction between channeled attention and cognitive imprecision will play a key

role in driving belief updating in the majority of information environments. Our

model also systematically predicts when one of the psychological mechanisms will

be the predominant driver of belief updating in a given environment: the parameter

estimates fall in the representativeness-dominant region for 8 of these environments—

including those with lower diagnosticities, consistent with the experimental data—

and in the cognitive-imprecision-dominant region for the remaining environment.

Finally, we examine belief heterogeneity among participants. Fixing an informa-

tion environment, the distribution of subjective beliefs for a given state is generally

unimodal, smooth, and centered around a mean posterior that deviates from the

objective posterior. Fig. D.4 in Appendix D.4 plots these distributions for 3-state

environments. Consistent with our framework, participants overweigh the represen-

tative state (ω3) the most and underweigh the middle state (ω2) the most.

3.5 Individual-Level Parameter Estimation

To explore individual-level heterogeneity in attention and processing constraints, we

estimate the parameters of the two-stage model for each participant. Although each

participant was assigned to a single complexity treatment, we have sufficient data

to estimate individual-level parameters for most participants (N = 1546) due to the

variation in the prior and the information structure.

Our estimates reveal significant heterogeneity across participants. Specifically,

70% of participants exhibit distortions in both stages of the belief-updating process,

as characterized by estimates of θ > 0 and λ < 1. Additionally, 9% of participants

exhibit only cognitive imprecision (θ = 0), 5% exhibit only representativeness (λ =

1), and the remaining 16% exhibit neither distortion (θ = 0 and λ = 1). See Fig. D.1

in Appendix D.2 for a plot of the individual-level parameter estimates.

The estimated values of θ and λ exhibit significant negative correlation, with

a correlation coefficient of −0.47. Therefore, participants who are more prone to

salience-driven distortion (higher θ) also tend to exhibit higher levels of cognitive

imprecision (lower λ). This suggests a link between attention and processing capacity

constraints: individual-level limits on attention coincide with cognitive imprecision,

which generates both greater distortion in the representational stage and noisier

evaluation in the processing stage. Importantly, this heterogeneity generates the

patterns of disagreement we observe in the subjective belief data (see Fig. D.4).

4 Testing the Mechanism

We next present direct evidence for salience-channeled attention as the proposed

cognitive mechanism. First, we measure attention to see where it is channeled. Sec-

ond, we further restrict attention and show how this impacts belief-updating. Third,

we study the causal effect of attention on belief-updating by examining how belief-

updating changes when salience cues are removed. Finally, we compare the impact of
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representativeness to other salience cues. Throughout this section we focus on state

spaces with 5 states, as channeled attention is predicted to have the largest impact

in these complex environments.

4.1 Measuring and Restricting Attention

In the representational stage of our model, limits on attention lead agents to focus on

representative states. The framework thus predicts that (i) after observing the signal,

agents’ attention will be channeled towards the state that is most representative of

the signal realization, and (ii) any further limits on cognitive resources will lead

agents to focus even more on representative states, generating more overreaction.

To test these predictions, we employ the Mouselab paradigm of Payne et al.

(1988), which is a commonly used tool in cognitive psychology to study attention.51

The Mouselab paradigm captures participants’ attention to various features of the

decision environment by the timing of the objects that they click on. For example,

in a lottery choice task, participants are asked to click on the attributes of each

gamble (e.g., the probability of winning each reward, the potential reward if a state

is realized) before selecting a gamble. The first click is taken as a proxy for the feature

that is attended to first, the second as a proxy for the feature that is attended to

second, etc.52 Research has also shown that the Mouselab paradigm, which requires

participants to click on attributes, places additional demands on cognitive attentional

resources: while the ordering of clicks corresponds to the ordering of attention, the

process of clicking itself requires additional attention to implement (Meißner et al.

2010; Wolfe, Alvarez, and Horowitz 2000; Alvarez, Horowitz, Arsenio, DiMase, and

Wolfe 2005).

We used the Mouselab paradigm to measure the order in which participants click

on the states and how the increased attentional demand of the paradigm impacts

belief-updating. This Limited Attention treatment required a participant to click

on a state (e.g., Bag 5) before being able to enter her posterior belief about the

state. Once a state was clicked, the participant could enter her belief for that state

as before. As in the Baseline Attention treatment, the percentage assigned to each

state had to sum to 100 and the order of states was randomized so that either the

bag with the most or least red balls appeared first. We ran this Limited Attention

treatment on all 5-state information environments listed in Table D.1.

In the context of the Mouselab paradigm, our two predictions are as follows. First,

participants will click on the representative state first. In other words, upon observing

a blue (red) ball, the most likely first-click will be on the bag with the most blue

51The Mouselab design, which has 2823 Google Scholar citations to date, has been used to study
attention and information acquisition across a wide array of domains, from identifying decision
strategies in consumer choice (Reisen, Hoffrage, and Mast 2008) to information search strategies in
dynamic contexts (Callaway, Lieder, Krueger, and Griffiths 2017).

52The use of click data as a proxy for channeled attention has been validated using eye-tracking
tools (Meißner, Decker, and Pfeiffer 2010).
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(a) State 1 Representative (b) State 5 Representative

Figure 9. Most participants click on representative state first. Each bar aggregates

both signal realizations for all 5-state environments in the Limited Attention treatment.

(red) balls. Second, fixing the information environment, overreaction will be higher

in the Limited Attention treatment relative to the Baseline Attention treatment, and

overreaction will be higher for participants who are more prone to salience-channeled

attention—proxied by their propensity to click the representative state first—relative

to other participants.

Fig. 9 shows the distribution of first-clicks across all information environments.

Notably, even though the order of states was randomized, participants were much

more likely to channel their attention—proxied by their first click—to the most rep-

resentative state. The difference is stark: the representative state was three times

more likely to be clicked first relative to the second-highest alternative (p < .001).

The fact that the representative state varied with the realized signal and the random

ordering rules out that this result is driven by an information-independent heuristic

(e.g., always click on the left-most bag first).

To examine the second prediction, Fig. 10a compares the overreaction ratio in the

5-state Baseline Attention treatment and the Limited Attention treatment. Overre-

action is indeed significantly higher in the latter across nearly all information environ-

ments. Within the Limited Attention treatment, Fig. 10b shows that overreaction

is substantially higher for individuals who clicked on the representative state first

relative to those who clicked on another state first across all information environ-

ments. These patterns are also borne out in a regression analysis: overreaction is

significantly higher in the Limited Attention treatment compared to the Baseline At-

tention treatment, and, within the Limited Attention treatment, for participants who

clicked the representative state first compared to those who did not (see Table D.14

in Appendix D.6).

Finally, we provide further evidence for the proposed predictions by structurally

estimating the parameters in the Limited Attention treatment and comparing them

to those obtained in the Baseline Attention treatment. The estimate of θ increases
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(a) Overreaction by attention treatment (b) Overreaction by first click

Figure 10. Limited attention increases overreaction and suppressing representa-
tiveness leads to underreaction. Each data point aggregates all 5-state environments in the

given attention/salience treatment by diagnosticity and signal realization.

from 0.99 to 1.26, while the estimate of λ remains similar—0.73 versus 0.74 (see

Table D.15 in Appendix D.6). This lends direct support to our prediction that

further restricting attentional resources through the Mouselab paradigm increases

salience-driven distortion in the representational stage (as indicated by higher θ),

while leaving the level of cognitive imprecision unchanged.

Taken together, these results support our two predictions. Moreover, they provide

further evidence against insensitivity and information-independent heuristics (e.g.,

partition dependence (Tversky and Koehler 1994)) as alternative explanations for

our results.

4.2 The Causal Effect of Attention: Suppressing Representativeness

To isolate the causal effect of channeled attention on belief-updating, we adapted the

Mouselab variation of our paradigm to remove the representativeness-based salience

cue. Participants were presented with the same information about the learning en-

vironment as in our Limited Attention treatment, including the set of possible ball

compositions. The only difference was that, to learn the signal distribution in each

state, participants needed to click on that state after observing the signal.53 The order

of states was randomized as in the other conditions. We ran this Representativeness

Suppressed treatment on all 5-state information environments listed in Table D.1.

Since it also used the Mouselab paradigm, the Limited Attention treatment is the

relevant benchmark comparison for this treatment.

Note that after clicking on each state, a participant had the same exact infor-

mation as in the Limited Attention treatment—but the initial salience cue of rep-

resentativeness was gone. Therefore, initial attention could no longer be directed

as a function of a state’s representativeness. By suppressing representativeness as a

53For example, the participant had to click on the state in the first position to find out that it
was associated with 90 (10) red (blue) balls, i.e., it had value 0.9.
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(a) Overweighing by first click
(b) Overweighing by representativeness
of state

Figure 11. Random attention generated distinct patterns of under- and overweigh-
ing. Each bar aggregates both signal realizations for all 5-state environments in the Represen-

tativeness Suppressed treatment; the Other States bar averages across all states not clicked first.

Beliefs are measured as a percentage from 0 to 100.

salience cue, we can isolate the causal effect of channeled attention on belief-updating.

We first test the conjecture that participants’ attention was channeled to states as-

if randomly with respect to their representativeness by looking at the first-click data.

In stark contrast to the Limited Attention treatment, Fig. D.6 in Appendix D.6 shows

that in the Representativeness Suppressed treatment, attention was not associated

with the representativeness of a state: each of the five states was equally likely to be

clicked first. However, channeled attention did still lead to overweighing of the state

that received the most attention: as shown in Fig. 11a, participants’ posterior beliefs

overweighed the state that they clicked first and underweighed the remaining states.

This is in line with Prediction 9 in Appendix C.3, where we apply our framework

to a setting where, in the representational stage, attention is channeled randomly

rather than as a function of representativeness. Therefore, even when attention was

channeled through a different cue, it still drove overweighing of the most attended to

state and underweighing of less attended to states.

We next test our prediction that randomly channeled attention will lead to under-

weighing of the most representative states and overweighing of the least representative

states, thereby leading to underreaction (see Prediction 10 in Appendix C.3)—even in

environments where participants would overreact if attention was channeled by repre-

sentativeness. Our data is consistent with this prediction. Fig. 11b shows that in the

Representativeness Suppressed treatment, (i) the least two representative states are

overweighed, (ii)) overweighing decreases with representativeness, and (iii)) the most

two representative states are underweighed. Moreover, while participants overreacted

in all 5-state environments when the representativeness salience cue was present—

both in the Baseline and Limited Attention treatments—participants underreacted

in all such environments when representativeness was suppressed (Fig. 10a).
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Together, these results provide direct support for the causal effect of channeled

attention on belief-updating. Importantly, they also demonstrate that underreaction

can emerge in complex environments when representativeness is suppressed (e.g.,

when there is uncertainty over which state is representative, such as for interest rate

and inflation news); therefore, underreaction is not just a phenomenon that emerges

in binary-state environments.

4.3 Other Salience Cues

Salience-channeled attention plays a central role in our framework. While we focus on

representativeness as a bottom-up salience cue, there are other salience cues that have

been considered in the literature. Here, we focus on two such alternatives that have

been extensively explored in prior work—namely, visual salience and goal-directed

attention—and compare their impact to representativeness. Mirroring the litera-

ture (Li and Camerer 2022; Maćkowiak et al. 2023), we generate bottom-up visual

salience by highlighting a particular state in a color that differs substantially from

the background color (bright yellow) and generate top-down goal-directed salience by

incentivizing participants’ beliefs about a particular state (as opposed to all states).

Again we ran these treatments on all 5-state information environments listed in Ta-

ble D.1 and used a variation of the Mouselab paradigm, so the Limited Attention

treatment is the relevant benchmark for comparison.

When the representativeness salience cue is suppressed, visual and goal-directed

salience cues are effective at channeling attention to the salient state: most partic-

ipants click on the state associated with the salience cues first and this state was

overweighed in beliefs (see Figs. D.7 and D.8a in Appendix D.6). Moreover, when

these alternative cues were associated with the most representative state, overre-

action arose, as predicted by our framework (see Prediction 11 in Appendix C.3).

Notably, the level of overreaction was similar in magnitude to the Limited Attention

treatment where the representativeness cue itself was present (see Fig. D.8b). This

contrasts with the Representativeness Suppressed treatment, where there were no

salience cues and underreaction emerged.

However, when the representativeness salience cue is present, it dominates the

other salience cues: participants overwhelmingly channelled their attention to the

representative state and their beliefs moved accordingly, even when the alternative

cue was on a different state. To study this, we ran a variation of the Limited Attention

treatment with the representativeness salience cue present and visual/goal-directed

salience on the least representative state. If the alternative salience cues were also

effective in channeling attention, then we should observe overweighing of the least

representative state and less overreaction or even underreaction (Prediction 11 in

Appendix C.3). However, representativeness dominated the alternative salience cues

in driving overweighing of the salient state: participants sizeably overweighed the

most representative state, but under- or only slightly overweighed the least represen-
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tative state (see Fig. D.9a). Moreover, overreaction remained similar in magnitude

to the Limited Attention treatment (see Fig. D.9b). Therefore, representativeness

dominated the other forms of salience cues in channeling attention.

These results provide further evidence for the critical role of attention on belief-

updating. They also show that while other drivers of attention impact belief updating

when representativeness is not present as a salience cue, representativeness is likely

to play a significant role in belief updating when the associated cue is present.

5 Evaluating Model Performance

To evaluate the performance of our two-stage model, we compute its completeness

and restrictiveness following the methodology developed by Fudenberg et al. (2022,

2023). We then compare the performance of our model to a one-stage model of

either only cognitive imprecision or only salience-channeled attention. We refer to

these comparison models as the processing-only model and the representational-only

model, respectively.

5.1 Completeness

Completeness is a measure of how much of the explainable variation in data a model

captures relative to an alternative, which we take to be Bayes’ rule. That is, a model

M is 0% complete if it predicts no better than Bayesian updating and 100% complete

if predicts as accurately as the best possible prediction. This measure is distinct

from the R-squared statistic typically reported for a regression analysis. As pointed

out by Fudenberg et al. (2022), completeness measures how well a model captures

regularities in the data, while R-squared captures the overall prediction error of the

model, which could stem from either missing regularities or intrinsic, irreducible

noise. A model could have high completeness but low R-squared—indicating that

it successfully captures key regularities in the data but the environment is noisy.

Details of how we estimate completeness can be found in Appendix D.7.1.

We first estimate completeness in the simple 2-state information environments.

As shown in Table 1, the processing-only model achieves essentially 100% complete-

ness. In these simple environments, the addition of the representational stage does

not yield any further improvement in model performance. This is consistent with

our conjecture that limited attention only has bite in complex environments, and

therefore adds little explanatory power in simple environments.

While the processing-only model effectively rationalizes belief-updating in simple

environments—potentially explaining its prominent role in organizing data from lab-

oratory experiments that primarily use binary state spaces—the model’s explanatory

power declines rapidly in more complex settings. Increasing the complexity of the

state space to three or more states decreases the completeness of the processing-only

model to a mere 36%. The representational-only model also has little explanatory

power in these more complex environments. Yet taken together, the two-stage model
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with both psychological processes achieves a very high completeness—it captures

92% of the explainable variation in the data, relative to Bayes’ rule. This shows that

the two processes are critical cognitive complements in determining belief-updating

in complex environments. Taken together with the results in Section 3, these findings

show that the interaction between limited attention and processing capacity is key

for understanding belief-updating in complex environments.

Table 1. Completeness and Restrictiveness

Completeness Restrictiveness
2 states > 2 states 2 states > 2 states

Two-Stage Model 1.00 0.92 0.73 0.91
(0.15) (0.05) (0.00) (0.00)

Processing-only Model 1.00 0.36 0.76 0.97
(0.06) (0.02) (0.00) (0.00)

Representational-only Model 0.00 0.00 1.00 1.00
(0.15) (0.04) (0.00) (0.00)

Notes: Includes all information environments listed in Table D.1 except for the 11-state
complexity; includes wrong direction reactions. Restrictiveness estimated from 1000 sim-
ulations.

5.2 Restrictiveness

While our two-stage model has high completeness, it may be that the inclusion of

the additional parameter makes the model so flexible that it could explain almost

any dataset. To rule this out, we next estimate a measure of the two-stage model’s

restrictiveness using randomly generated ‘synthetic’ belief data (Fudenberg et al.

2023). We then compare the average prediction losses of the two-stage model and

Bayes’ rule on the synthetic dataset. A model is 0% restrictive if it fits synthetic

data perfectly and 100% restrictive if it fits synthetic data no better than Bayes’

rule. Intuitively, the model is overly flexible if it has a good fit on the synthetic

data relative to Bayes’ rule. Details of the estimation procedure can be found in

Appendix D.7.2.

As shown in Table 1, the two-stage model has high restrictiveness in simple infor-

mation environments with two states (0.73) and very high restrictiveness in complex

information environments with more than two states (0.91). Moreover, it has similar

restrictiveness to the processing-only model (0.73 versus 0.76 for simple environments

and 0.91 versus 0.97 for more complex environments). This shows that the substan-

tially higher explanatory power of the two-stage model relative to the processing-only

model does not come at the expense of a significant increase in flexibility.54

54In Appendix C we consider a variation of the processing-only model with more flexible cognitive
imprecision. While this added flexibility achieves higher completeness, it is still much less complete
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Figure 12. Completeness-restrictiveness trade-off (Complex environments > 2 states)

While the representational-only model is as restrictive as Bayes’ rule, it also adds

little explanatory power relative to Bayes’ rule. In contrast, the two-stage model

has both high restrictiveness and high completeness—it is almost as restrictive as

Bayes’ rule while adding significant explanatory power relative to Bayes’ rule. To

visualize this trade-off between explanatory power and flexibility, Fig. 12 plots the

completeness and restrictiveness of the three models in complex environments. As the

figure illustrates, once we go beyond a simple environment, incorporating responses to

complexity into a model of belief-updating leads to a striking increase in explanatory

power while only minimally increasing the model’s flexibility.

6 Extensions

This section presents several extensions that explore the predictions of our frame-

work for different signal structures (beyond good news), belief-updating domains

(inference versus forecasting), and learning objects (beliefs about financial assets).

Experimental details are outlined in Appendix D.8.

6.1 Alternative Signal Structures

The preceding findings have all been in a setting with a good news signal struc-

ture. While this is a natural signal structure to adopt, as previously discussed, there

are some important economic settings where information does not have this struc-

ture.55 The two-stage model outlined in Section 2 also generates predictions in these

alternative settings. As in the good news case, it still predicts that the most repre-

than the two-stage model (0.65 versus 0.92 in complex environments) and also less restrictive (0.89
versus 0.91 in complex environments).

55For example, it is not clear how changes in the US Treasury rate or inflation reflect the under-
lying state. An inflation increase can reflect good news about the economy via a positive demand
shock (e.g., fiscal stimulus) or bad news via a negative supply shock (e.g., a supply chain disruption).
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sentative state will be overweighed, but now whether this translates to over- versus

underreaction depends on the details of the information environment.

To study an alternative information environment in which a middle state is most

representative, we consider a 3-state environment with three signals: balls are either

red, blue, or green. The bags contained a combination of these balls such that one

bag was representative of each color.56 The rest of the design was the same as in

the baseline paradigm. Table D.16 in Appendix D.8.1 outlines the set of information

environments that we used.

Fig. 13a plots the difference between the subjective and Bayesian posterior for

each state and Table D.17 presents a regression analysis. The data is consistent with

our predictions: following each signal realization, the most representative state is sig-

nificantly overweighed and the other states are significantly underweighed. However,

in contrast to the overreaction observed in the good news setting, participants under-

react to signal realizations representative of the middle state: as shown in Fig. 13b,

the overreaction ratio is significantly negative in this case (r = −0.30, p < .01).57 We

both predict and observe overreaction when the signal is representative of the high

or low state (r = 0.38, p < .01), as in the good news case.

Together with the representativeness-suppressed treatment in Section 4.2, these

findings show that our framework does predict underreaction in some complex en-

vironments. This can help rationalize empirical results that find such underreaction

(e.g., inflation (Kučinskas and Peters 2022), interest rates (Bordalo et al. 2020)).

6.2 Forecasting Price Growth

Our analysis has thus far focused on the inference domain, where people are tasked

with inferring the likelihood of states after observing a noisy signal. In forecasting,

the relevant representational objects are typically either the same as the signal (e.g.,

predicting a future price based on today’s price) or a direct function of it (e.g., the

future payoff of an option, which is a direct function of the future price, based on

today’s price). We now proceed to demonstrate the implications of our framework

in the forecasting domain.

To do this, we build on the setting used in Fan et al. (2023), which featured a

binary state space (a firm was either good or bad) and a discretized normal signal

distribution (the firm’s monthly stock price growth). In their study, all participants

observed a price drawn from the chosen firm’s signal distribution. Over half of them

underreacted when asked to report their posterior about the firm’s state, similar

to our inference experiment, but over half overreacted when asked to report their

56For example, Bag 1: (red, blue, green)=(45, 35, 20), Bag 2: (red, blue, green)=(20, 45, 35),
and Bag 3: (red, blue, green)=(35, 20, 45). In this case, Bag 1, 2, and 3 are representative of the
red, blue, and green balls, respectively.

57As in the good news case, we set the value of the state equal to the share of red balls. Under
this measure, depending on the information environment, either a blue or green ball is representative
of the middle state.

46



(a) Overweighing by representativeness of
state

(b) Overreaction by position of representa-
tive state

Figure 13. In a non-good news setting, participants overweigh the most repre-
sentative state following each signal; they underreact when the middle state is most
representative and otherwise overreact. Each bar aggregates all environments in the 3-signal

treatment—by signal realization (state 1, 2, or 3 representative) and state in Panel (A), and by

rank order of state according to the share of red balls (low, middle or high) in Panel (B). Beliefs

are measured as a percentage from 0 to 100.

prediction of the next signal, i.e., forecasting the stock price growth next month.

The authors refer to this as the “inference-forecasting” gap in belief updating.

In the context of our framework, attention is channeled based on the number of

objects or outcomes that one must form beliefs over. For the inference task, partici-

pants needed to update their beliefs about two objects—the firm is good or bad—as

in our two-state paradigm. But in the forecasting task, participants needed to form

a belief over many objects—the 11 potential price outcomes. Given the good news

structure of both environments, our model predicts that the higher representational

complexity of the forecast task will lead participants to overreact more than in the

inference task, which has lower representational complexity.

We test this conjecture by manipulating the number of objects that participants

need to form beliefs over in their forecasts. We presented participants with a distri-

bution of prices for each type of firm (good or bad). Each participant observed a

price signal and reported a forecast in one of two conditions, Simple or Complex. In

the Complex condition, the participant reported a forecast about the likelihood of

each of 11 potential prices, as in Fan et al. (2023), whereas in the Simple condition,

the price space was partitioned into two bins and the participant reported a forecast

on the likelihood of each bin. The two conditions were identical except for this dif-

ference in the number of objects over which the forecast was reported; specifically,

the underlying information environment was exactly the same.58

As shown in Fig. 14a, we replicate the predominant finding of overreaction when

participants form a forecast over a large number of objects (Complex condition).

58Appendix D.8.2 reports the details of the experiment.
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(a) Forecast Price Growth (b) Financial Options

Figure 14. Participants overreact in complex forecasting tasks and underreact in
simple ones. Each bar aggregates all signal realizations in the relevant condition.

However, despite facing the same information environment, marked underreaction

arose when the forecast was over two objects (Simple condition). These results

demonstrate that our model can also help explain over- versus underreaction in the

forecasting domain. We view this as complementary to the mechanism for forecast-

ing versus inference discussed in Fan et al. (2023), which proposes that people use

different simplifying heuristics across the two domains.

6.3 Forecasting Financial Instruments

We now proceed to explore the implications of our framework for forecasting the

payoffs of financial instruments—specifically, stock options. Puri (2022) argues that

people are averse to risk that is complex to evaluate, where her definition of complex-

ity maps directly to the notion of representational complexity outlined in Section 2,

i.e., the number of objects one needs to consider when making a judgment. Goodman

and Puri (2022) show that attitudes towards complexity can explain the preference

for binary options over bull-spreads on the same asset, even when the latter dominates

the former.

For the purposes of our investigation, the main substantive difference between

the two is that a binary option has two potential outcomes—a pre-determined payoff

if the price of an asset is above a certain threshold and zero otherwise—while a bull

spread on the same asset has a larger number of potential outcomes (also based on

the price of the asset).59 Our framework predicts that the difference in complexity

between the two instruments will generate a difference in belief-updating. Specifically,

fixing the underlying asset and information environment, people will underreact when

predicting the payoff of a binary option but overreact for a bull spread.

We tested this prediction experimentally by endowing participants with either a

59For example, consider a binary option that returns a pre-determined payoff if the price of an
asset is greater than S in a pre-determined period and zero otherwise. A dominating bull spread
would generate the same payoff if the price is greater than S, but also generate a series of smaller
payoffs when the price is between S′ and S for some S′ < S. See Appendix D.8.3 for a more detailed
description of binary options and bull spreads.
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binary option (simple) or bull spread (complex) on the same underlying asset. They

then observed a signal of the asset’s performance (its price increase this month) and

forecasted the likelihood of potential payoffs for their option next month. Fig. 14b

shows that indeed, the majority of participants underreacted to the price signal in the

case of the binary option, while the majority of participants overreacted to the same

information in the case of the bull spread. This pattern is robust across signal real-

izations and also holds for the overreaction ratio (see Fig. D.12 in Appendix D.8.3).

7 Conclusion

This paper examines the incidence and underlying drivers of under- and overreaction.

A key contribution of our framework is the two-stage model of belief-updating, which

allows for the interaction between multiple psychological mechanisms. We empirically

show that salience-channelled attention and cognitive imprecision are cognitive com-

plements and their interaction plays a crucial role in explaining how agents update

beliefs across learning environments. While the majority of papers in psychology

and behavioral economics have focused on identifying the implications of a single

psychological mechanism, it is likely the case that observed judgments and choices

are the product of multiple mechanisms. Our results show that heuristics do not

just operate independently but also reinforce one another in important ways. This

suggests that modeling and testing more ‘unified’ frameworks across economically

important domains is a fruitful area for further research.

Another contribution of our framework is to explicitly differentiate between differ-

ent forms of complexity in the learning environment—representational and computational—

and demonstrate the importance of each type for belief-updating. We empirically

show that representational complexity leads agents to simplify the information en-

vironment, which impacts the form of bias that emerges. While we focus on state

space complexity, other aspects of the learning environment—such as the richness of

the signal space or the number of signal draws—can also vary in complexity. This

suggests that modeling and testing how agents simplify other types of complexity

when interpreting and using information is an important area for future research.
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Präferenzmessungen mittels Choice-based Conjoint Analyse,” Marketing ZFP-

Journal of Research and Management, 32, 135–144.

Milgrom, P. R. (1981): “Good News and Bad News: Representation Theorems

and Applications,” The Bell Journal of Economics, 380–391.

Mohrschladt, H., M. Baars, and T. Langer (2020): “How General is the

Strength-Weight Bias in Probability Updating?” Working Paper.

Molavi, P. (2022): “Simple Models and Biased Forecasts,” arXiv preprint

arXiv:2202.06921.

Molavi, P., A. Tahbaz-Salehi, and A. Vedolin (2023): “Model Complexity,

Expectations, and Asset Prices,” The Review of Economic Studies, rdad073.

Oberauer, K. (2019): “Working Memory and Attention–A Conceptual Analysis

and Review,” Journal of Cognition, 2.

Oberauer, K., S. Farrell, C. Jarrold, and S. Lewandowsky (2016):

“What Limits Working Memory Capacity?” Psychological Bulletin, 142, 758.

Oprea, R. (2020): “What Makes a Rule Complex?” American Economic Review,

110, 3913–51.

——— (2022): “Simplicity Equivalents,” Working paper.

Panichello, M. F. and T. J. Buschman (2021): “Shared Mechanisms Underlie

the Control of Working Memory and Attention,” Nature, 592, 601–605.

Papadimitriou, C. H. (2003): “Computational Complexity,” in Encyclopedia of

Computer Science, 260–265.

Payne, J. W., J. R. Bettman, and E. J. Johnson (1988): “Adaptive Strategy

Selection in Decision Making,” Journal of Experimental Psychology: Learning,

Memory, and Cognition, 14, 534.

——— (1993): The Adaptive Decision Maker, Cambridge University Press.

Peterson, C. R., R. J. Schneider, and A. J. Miller (1965): “Sample Size

and the Revision of Subjective Probabilities,” Journal of Experimental Psychology,

69, 522.

Phillips, L. D. and W. Edwards (1966): “Conservatism in a Simple Probability

Inference Task,” Journal of Experimental Psychology, 72, 346.

Prat-Carrabin, A. and M. Woodford (2022): “Imprecise Probabilistic Infer-

ence from Sequential Data,” PsyArXiv Preprint.

Puri, I. (2022): “Simplicity and Risk,” Available at SSRN, 3253494.

Rabin, M. (2002): “Inference by Believers in the Law of Small Numbers,” The

Quarterly Journal of Economics, 117, 775–816.

54



Reisen, N., U. Hoffrage, and F. W. Mast (2008): “Identifying Decision

Strategies in a Consumer Choice Situation,” Judgment and Decision Making, 3,

641–658.

Robalo, P. and R. Sayag (2018): “Paying is Believing: The Effect of Costly In-

formation on Bayesian Updating,” Journal of Economic Behavior & Organization,

156, 114–125.

Salant, Y. and J. L. Spenkuch (2022): “Complexity and choice,” Tech. rep.,

National Bureau of Economic Research.

Schwartzstein, J. (2014): “Selective Attention and Learning,” Journal of the

European Economic Association, 12, 1423–1452.

Shenhav, A., S. Musslick, F. Lieder, W. Kool, T. L. Griffiths, J. D.

Cohen, and M. M. Botvinick (2017): “Toward a Rational and Mechanistic

Account of Mental Effort,” Annual Review of Neuroscience, 40, 99–124.

Talsma, D., D. Senkowski, S. Soto-Faraco, and M. G. Woldorff (2010):

“The Multifaceted Interplay between Attention and Multisensory Integration,”

Trends in Cognitive Sciences, 14, 400–410.

Tanner, J. and L. Itti (2019): “A Top-down Saliency Model with Goal Rele-

vance,” Journal of Vision, 19, 11–11.

Thurstone, L. L. (1927): “A Law of Comparative Judgment.” Psychological Re-

view, 101, 266.

Tversky, A. and D. Kahneman (1974): “Judgment under Uncertainty: Heuris-

tics and Biases: Biases in judgments Reveal Some Heuristics of Thinking under

Uncertainty.” Science, 185, 1124–1131.

——— (1983): “Extensional versus Intuitive Reasoning: The Conjunction Fallacy in

Probability Judgment,” Psychological Review, 90, 293.

Tversky, A. and D. J. Koehler (1994): “Support Theory: A Nonextensional

Representation of Subjective Probability.” Psychological Review, 101, 547.

Wang, C. (2021): “Under-and Overreaction in Yield Curve Expectations,” Available

at SSRN 3487602.

Wolfe, J. M., G. A. Alvarez, and T. S. Horowitz (2000): “Attention is Fast

but Volition is Slow,” Nature, 406, 691–691.

Woodford, M. (2020): “Modeling Imprecision in Perception, Valuation, and

Choice,” Annual Review of Economics, 12, 579–601.

Yantis, S. (2008): “The Neural Basis of Selective Attention: Cortical Sources and

Targets of Attentional Modulation,” Current Directions in Psychological Science,

17, 86–90.

A Under- and Overreaction in Prior Work

In this section, we relate our findings to the theoretical and empirical literature on

under- and overreaction. We primarily focus on settings where agents observe one
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signal draw, but also briefly discuss settings where agents observe multiple draws.

Laboratory studies. The key contribution of our paper is to explicitly consider

how complexity of the information environment impacts belief-updating. As previ-

ously noted, the vast majority of laboratory experiments focus on a simple 2-state

setting. Benjamin (2019) presents a meta-analysis of experiments with a binary

state space, symmetric signal diagnosticity, and uniform prior, and finds that people

generally underreact to information.

There are several noteworthy studies that do use more than two ‘bags’ in the

design. Phillips and Edwards (1966) conduct ‘bookbag-and-poker-chip’ experiments

in which the number of bags is increased to 10. However, there are only two unique

states: each bag of N chips has either x red chips or N − x red chips, with the

remaining chips blue. Thus, this experiment is equivalent to varying the prior rather

than expanding the state space. Consistent with our prediction, they predominantly

find underreaction. Hartzmark, Hirshman, and Imas (2021) explore how people learn

about owned versus non-owned goods. Their design features a uniform prior and 8

states, where each state is associated with a distinct signal distribution. Consistent

with our framework, the authors document overreaction. But they do not explore

how the size of the state space impacts the level of overreaction—their focus is on dif-

ferences in belief-updating as a function of ownership. Prat-Carrabin and Woodford

(2022) find underreaction in an environment with a continuous state space [0, 1] and

uniform prior. Relating this result to our complexity predictions requires a model

of how complexity is perceived for an uncountable state space. For example, par-

ticipants may partition the state space into a finite set of intervals, with complexity

corresponding to the cardinality of the partition. A partition into states that are

greater or less than 0.5 would have the same complexity as a binary state space in

our framework, predicting underreaction. A continuous state space may also prompt

a different cognitive default. To test for this possibility, we ran a study that elicited

the cognitive default in a ‘continuous’ version of our setting (N = 100).60 Indeed,

in contrast to a discrete state space, participants reported a cognitive default that

placed substantially more weight on middle states relative to extreme states—similar

to a (truncated) normal distribution. This difference in cognitive defaults could ex-

plain the underreaction they found in the continuous state space setting versus the

overreaction we find in complex discrete state space settings.

Fan et al. (2023) show underreaction for inference in a simple two-state setting

and overreaction when forecasting. As shown in 6.2, our framework provides a com-

plementary explanation for these results as a function of the difference in complexity

across the two settings. Afrouzi, Kwon, Landier, Ma, and Thesmar (2023) also find

60The state space consisted of a set of bags ordered along the unit interval, where the state
corresponded to the probability of drawing a red ball. We used the same method as in Section 3 to
elicit the cognitive default.
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overreaction in an experiment where the forecast variable has a complex state space.

Researchers have also studied how changes in signal diagnosticity affect belief-

updating. Consistent with our predictions and empirical results, several studies have

found that people exhibit greater underreaction to more precise signals. Edwards

(1968) ran studies with a binary state space, uniform prior, and symmetric infor-

mation structures with signal diagnosticities di ∈ {0.55, 0.7, 0.85}. When the signal

was less precise (di = 0.55), subjects exhibited overreaction; as the diagnosticity

increased, they exhibited more underreaction.61 Kieren and Weber (2020) find un-

derreaction to informative signals and overreaction to uninformative signals. Recent

work by Augenblick et al. (2022) argues that this comparative static is consistent with

a model of noisy cognition. Their paper complements our framework by extending

the way in which cognitive noise can generate overreaction. They consider a simple

two-state setting where the agent forms a noisy representation of the signal diagnos-

ticity, and show that this predicts underreaction to precise signals and overreaction

to sufficiently noisy signals. Our model generates the same comparative static on

diagnosticity, but it stems from both representativeness and cognitive imprecision.

Our results also relate to findings on how the prior impacts belief-updating. A

large body of work has shown that people are generally insensitive to base rates

(e.g., Kahneman and Tversky (1973); Green, Halbert, and Robinson (1965); Grether

(1992); Robalo and Sayag (2018)). However, as outlined in Prediction 4, whether

base-rate neglect generates under- or overreaction depends on whether the signal re-

alization is confirmatory or disconfirmatory. Holt and Smith (2009) vary the prior

in a 2-state setting. In line with our findings, they show that when the prior is more

asymmetric and a disconfirmatory realization is observed, people overreact; in con-

trast, following a confirmatory realization or under a more symmetric prior, people

underreact. Kieren, Müller-Dethard, and Weber (2022) find that investors system-

atically overreact to disconfirmatory information in both experiments and financial

market data.

A line of work explores belief-updating when agents observe multiple signals

drawn from the same distribution. Griffin and Tversky (1992) find that people focus

too much on the strength of evidence (e.g., sample proportions of each signal realiza-

tion) and not enough on the weight (e.g., number of signals) in a two-state setting.

Mohrschladt, Baars, and Langer (2020) explore the robustness of this strength/weight

bias across different information environments, finding that the underinference from

larger numbers of signals does not translate to more general settings. Massey and

Wu (2005) find that people tend to neglect the possibility of a regime shift in a set-

61Similar patterns are documented in Phillips and Edwards (1966); Peterson, Schneider, and
Miller (1965); Kahneman and Tversky (1972); Grether (1992); Holt and Smith (2009); Benjamin
(2019). When the information structure is asymmetric, a similar pattern holds: agents tend to
overreact when diagnosticities are close together (and thus close to 0.5) and underreact when they
are further apart. See Peterson et al. (1965); Ambuehl and Li (2018).
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ting where the signal distribution probabilistically changes across time. This leads

to under- or overreaction depending on the probability of a shift and the precision

of the signal. Observing multiple signal draws introduces additional channels of bias

that are outside of our framework. In future work, it would be interesting to explore

how simplification heuristics and cognitive imprecision interact in such dynamic en-

vironments.

Our paper contributes to the theoretical literature that seeks to explain the preva-

lence of underreaction in laboratory studies. Phillips and Edwards (1966) propose

that people suffer from conservatism bias: they underweigh the likelihood ratio of the

signal, which leads to underreaction. Benjamin, Rabin, and Raymond (2016) pro-

pose that people have extreme-belief aversion, i.e., an aversion to holding beliefs close

to certainty. As pointed out by DuCharme (1970), both conservatism and extreme-

belief aversion can lead to underreaction when the signal is precise. As discussed in

Section 2, a model of noisy cognition also predicts underreaction (Woodford 2020).62

Financial markets. A growing literature in finance and macroeconomics uses sur-

veys and forecasts by professionals and households to study departures from rational

expectations (see Bordalo et al. (2022) for review). A common approach is to exam-

ine the predictability of forecast errors from forecast revisions (Coibion and Gorod-

nichenko 2015).63 In contrast to the experimental findings, this research typically

finds that people overreact to information. For example, Bordalo et al. (2020) ana-

lyze time series data on a large group of financial and macro variables and individual

forecasts from professionals. They find that forecasts for the vast majority of these

variables exhibit overreaction.64 d’Arienzo (2020) and Wang (2021) find that indi-

vidual analysts’ forecasts of long-term interest rates exhibit overreaction. Bordalo

et al. (2019) find overreaction in the expectations of long-term corporate earnings

growth.

Although overreaction has been found to be predominant for many financial vari-

ables, both in the case of macro news and news about individual stocks, there are

notable exceptions. For example, Bordalo et al. (2020) find underreaction to news

about the three-month US Treasury rate and Kučinskas and Peters (2022) find un-

derreaction about aggregate inflation shocks. As shown and discussed in Section 4.2

and Section 6.1, this may be due to the specific signal structure and salience cues

62A similar reduced form updating rule is found in Epstein, Noor, Sandroni et al. (2010), which
considers the implication of underreaction on asymptotic learning.

63Augenblick and Rabin (2021) develop an alternative statistical test of under- and overreac-
tion by exploiting the equivalence between the expected movement in beliefs and the expected
uncertainty reduction for Bayesian learners. Greater (lesser) actual belief movement, relative to
uncertainty reduction, is indicative over- (underreaction).

64In addition to identifying overreaction in individual forecasts, Bordalo et al. (2020) also docu-
ment underreaction in consensus forecasts. They explain this underreaction with a model in which
forecasters do not respond to other forecasters’ information. The underreaction we identify dif-
fers in that it stems from cognitive noise at the individual level rather than a lack of information
integration across forecasters.
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in this setting. Bouchaud, Krueger, Landier, and Thesmar (2019) document un-

derreaction of analyst forecasts of firms’ short term earnings.65 As also noted in

Augenblick et al. (2022), earnings announcements tend to be fairly informative in

the short-term, and this high diagnosticity would increase the likelihood of underre-

action in our framework. Indeed, longer-term earnings forecasts, which are noisier,

do exhibit overreaction (Bordalo et al. 2019). Finally, other instances of documented

underreaction may be due to inattention to the relevant information (DellaVigna and

Pollet 2009), which is consistent with agents not attending to the signal in our model

(Section 2). At the same time, we acknowledge that factors outside our model that

can generate differences in over versus underreaction to information, such as frictions

in the spread of information (Barberis et al. 1998) or contextual differences shifting

the salience of key features (Bordalo et al. 2023).

A workhorse theory in the financial literature is the diagnostic expectations model,

where agents overreact to information due to a reliance on the representativeness

heuristic (Bordalo et al. 2019, 2020). For example, Kwon and Tang (2021) show that

such a model can explain overreaction to extreme corporate events and underreaction

to non-extreme events. Our two-stage model incorporates the underlying psychology

of the diagnostic expectations model into the ‘representational’ stage.

Our framework can potentially reconcile the seemingly contradictory findings in

the lab versus observational data. A prominent feature of real-world settings is that

decision-makers tend to face much more complex information environments and nois-

ier signals than in the lab. Consistent with the empirical results, our framework thus

predicts that we should expect overreaction in real-world settings that feature noisy

signals and a good news signal structure. On the other hand, as noted above, labo-

ratory studies tend to focus on simple binary state spaces and relatively informative

signals. Again consistent with the findings in this literature, our framework predicts

that we should see underreaction in these simple environments.

One important thing to note is that we focus on studies that collect belief data

(either by eliciting them directly or through forecasts and surveys). A related lit-

erature starting with Ball and Brown (1968) and De Bondt and Thaler (1985) has

examined under- and overreaction by looking at choice data—specifically, price move-

ments. Prices have been found to adjust slowly to firm-specific (Ball and Brown 1968)

and macro (Klibanoff et al. 1998) announcements, and to display short-term auto-

correlation (i.e., momentum); these effects have been interpreted as underreaction

(Hirshleifer, Lim, and Teoh 2009; Daniel et al. 1998). Prices also display long-term

negative autocorrelation, which has been interpreted as overreaction. However, it is

not clear whether price responses are driven by preferences or beliefs. For example,

65Kwon and Tang (2021) similarly find short-term underreaction to earnings announcements in
prices. As discussed further below, we focus on data on beliefs due to the potential for identification
issues when interpreting price data.
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Frazzini (2006) shows that the slow price adjustment to earnings announcements—the

famous post-earnings announcement drift (PEAD)—is consistent with the disposi-

tion effect, which has been explained through prospect theory preferences (Barberis

2012; Heimer, Iliewa, Imas, and Weber 2021). Charles, Frydman, and Kilic (2023)

show that noisy cognition can weaken the link between beliefs and behavior, such

that overreaction in the former can still generate underreaction in the latter. Since

our paper focuses on belief-updating, we do not attempt to apply our framework to

behavior.

B Proofs

Proof of Claim in Footnote 24. In our context, the representativeness-based

discounting weighing function generates a distorted belief

pR(ωi|sj) =
pB(ωi|sj)R(ωi, sj)

θ∑
ωi∈Ω pB(ωi|sj)R(ωi, sj)θ

,

whereas applying Bayes’ rule to π̂ results in

pR(ωi|sj) =
π̂(sj|ωi)p0(ωi)∑

ωk∈Ω π̂(sj|ωk)p0(ωk)
=

π(sj|ωi)R(ωi, sj)
θp0(ωi)∑

ωk∈Ω π(sj|ωk)R(ωk, sj)θp0(ωk)

=
pB(ωi|sj)R(ωi, sj)

θ∑
ωk∈Ω pB(ωk|sj)R(ωk, sj)θ

,

which are equal. To see the counting a signal θ + 1 times property, note that

π̂(sk|ωi)/π̂(sk|ωj) ≡ (π(sk|ωi)/π(sk|ωj))
θ+1, so the mental representation is distort-

ing the signal likelihood ratio by a factor of θ. This updating rule has often been

used in the theoretical literature to capture overreaction (Bohren and Hauser 2021;

Angrisani, Guarino, Jehiel, and Kitagawa 2020).

Proof of Claim in Footnote 29. We show that our definition of overreaction in

Definition 1 is equivalent to the binary state definition stated in Footnote 29. Fix

any signal realization sj. Note that

Ê (ω|sj)− E0 (ω) =ω2 (p̂ (ω2|sj)− p0 (ω2)) + ω1 (p̂ (ω1|sj)− p0 (ω1))

=ω2 (p0 (ω1)− p̂ (ω1|sj)) + ω1 (p̂ (ω1|sj)− p0 (ω1))

=(ω2 − ω1)(p0 (ω1)− p̂ (ω1|sj)),

where p̂ is the subjective posterior following signal realization sj, and similarly

EB (ω|sj)− E0 (ω) = (ω2 − ω1)(p0 (ω1)− pB (ω1|sj)),

where pB is the objective posterior following signal realization sj. Hence,

r(sj) =
(Ê(ω|sj)− E0(ω))− (EB(ω|sj)− E0(ω))

(EB(ω|sj)− E0(ω))
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=
(p0(ω1)− p̂(ω1|sj))− (p0(ω1)− pB(ω1|s))

(p0(ω1)− pB(ω1|sj))

=
p̂(ω1|sj)− pB(ω1|sj)
pB(ω1|sj)− p0(ω1)

.

The argument is similar for ω2.

Statement and proof of Lemma 1.

Lemma 1. Consider a symmetric information environment (Ω, p0). Then the agent

never wrong direction reacts, r(sj) ≥ −1 for all sj ∈ S.

Proof. As shown in Eq. (9), in a symmetric information environment, r(sj) = λrR(sj)−
(1 − λ), where rR(sj) = (ER(ω|sj) − EB(ω|sj))/(EB(ω|sj) − E0(ω)) > 0. It follows

that r(sj) ≥ −1. □

Proof of Prediction 1. Suppose the signal realization is s2. The objective poste-

rior of any state ωi ∈ Ω is

pB(ωi|s2) =
p0(ωi)ωi∑

ωj∈Ω p0(ωj)ωj

=
2ωi

N

We can write the Bayesian expected state as

EB(ω|s2) =
∑
ωi∈Ω

pB(ωi|s2)ωi =
2

N

∑
ωi∈Ω

ω2
i

Suppose Ω contains an even number of states and N = 2K, then

EB(ω|s2)− E0(ω) =
2

N

∑
ωi∈Ω

ω2
i −

1

2

=
2

N

[
(1− ωN)

2 + ...+ (1− ωK+1)
2 + ω2

K+1 + ...+ ω2
N − K

2

]
=

4

N

[(
ωK+1 −

1

2

)2

+ ...+

(
ωN − 1

2

)2
]
.

When Ω contains an odd number of states and N = 2K − 1, symmetry implies that

the Kth state must be 1
2
. We therefore obtain the same expression for EB(ω|s2) −

E(ω). On the other hand,

ER(ω|s2) =
∑
ωi∈Ω

pR(ωi|s2)ωi =
∑
ωi∈Ω

p0(ωi)ω
θ+2
i∑

ωj∈Ω p0(ωj)ω
θ+1
j

=

∑
ωi∈Ω ωθ+2

i∑
ωi∈Ω ωθ+1

i

.

Note that ER(ω|s2) converges to the most representative state as θ goes to infinity.

That is, limθ→∞ ER(ω|s2) = ωN . It follows that

lim
θ→∞

rR(s2) + 1 = lim
θ→∞

ER(ω|s2)− E0(ω)

EB(ω|s2)− E0(ω)
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=
ωN − 1

2

4
N

[(
ωK+1 − 1

2

)2
+ ...+

(
ωN − 1

2

)2] . (11)

A similar expression to Eq. (11) with respect to Ω′ holds for r′(s2). Since Ω′ is

equally dispersed as Ω, ω′
N = ωN . Since Ω′ is more complex than Ω and every state

in Ω′ \Ω is more interior than every state in Ω,

4

N ′

[(
ω′
K+1 −

1

2

)2

+ ...+

(
ω′
N ′ −

1

2

)2
]
<

4

N

[(
ωK+1 −

1

2

)2

+ ...+

(
ωN − 1

2

)2
]
.

Therefore, when θ is sufficiently large, it follows from Eq. (9) that r′(s2) > r(s2).

The proof is analogous for signal realization s1. □

Proof of Prediction 2. Suppose p′0 is strictly more concentrated than p0 and

both are symmetric. Let ω′ and ω denote the random variables that are distributed

according to p′0 and p0, respectively. Since the priors have the same support, both

ER(ω
′|sj) and ER(ω|sj) converge to the highest state in the support, ωN , when θ

diverges to infinity. Thus, to show that r′(sj) > r(sj) when θ is sufficiently large, it

suffices to show that 0 < (EB(ω
′|sj)− E0(ω

′))/(EB(ω|sj)− E0(ω)) < 1.

Suppose the signal realization is s2. Since EB(ω
′|s2) > 1/2, EB(ω|s2) > 1/2,

and E0(ω
′) = E0(ω) = 1/2, we only need to show EB(ω

′|s2) < EB(ω|s2). Let

∆(ωi) = p′0(ωi) − p0(ωi). Then ∆(ωi) ≥ 0 for ωi ∈ [1 − c, c] and ∆(ωi) ≤ 0 for

ωi ∈ [0, 1− c] ∪ [c, 1], and at least one inequality is strict. We have

EB(ω
′|s2) = 2

∑
ωi∈Ω

p′0(ωi)ω
2
i = EB(ω|s2) + 2

∑
ωi∈Ω

∆(ωi)ω
2
i .

Since ∆(ωi) is symmetric around 1/2,∑
ωi∈Ω

∆(ωi)ω
2
i =

∑
ωi<1−c

∆(ωi)ω
2
i +

∑
ωi∈(1−c,c)

∆(ωi)ω
2
i +

∑
ωi>c

∆(ωi)ω
2
i

=2
∑

ωi∈(1/2,c)

∆(ωi)(ωi − 1/2)2 + 2
∑

ωi∈[c,1)

∆(ωi)(ωi − 1/2)2 < 0,

where the inequality holds because |ωi − 1/2| < |ωj − 1/2| for any ωi ∈ (1/2, c) and

ωj ∈ (c, 1). Therefore, EB(ω
′|s2) < EB(ω|s2). The proof is analogous for signal

realization s1. □

Proof of Prediction 3. As in the proof of Prediction 1, we can show that

lim
θ→∞

rR(s2) + 1 = lim
θ→∞

ER(ω|s2)− E0(ω)

EB(ω|s2)− E0(ω)

=
ωN − 1

2

4
N

[(
ωK+1 − 1

2

)2
+ ...+

(
ωN − 1

2

)2] .
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The above expression is decreasing in ωK+1, ..., ωN−1. Moreover, fixing ωK+1, ...ωN−1,

if W (Ω) > 0, then
(
ωN − 1

2

)2
>
(
ωK+1 − 1

2

)2
+ ... +

(
ωN−1 − 1

2

)2
, so the above

expression is decreasing in ωN . The proof is analogous for signal realization s1. It

follows that the agent reacts more in (Ω′, p′0) than (Ω, p0) for sufficiently large θ. □

Proof of Prediction 4. For convenience, we denote the binary state space as

Ω = {1− x, x} where x > 1/2 and the prior as (1− p0, p0). We first prove Part (ii)

of Prediction 4 since it is more involved.

Part (ii). Without loss of generality, we assume p0 > 1/2 and consider a confir-

matory realization sj. We have

E(ω) = 1/2, (12)

E0(ω) = (1− p0)(1− x) + p0x, (13)

EB(ω|sj) =
(1− p0)(1− x)2 + p0x

2

(1− p0)(1− x) + p0x
, (14)

ER(ω|sj) =
(1− p0)(1− x)θ+2 + p0x

θ+2

(1− p0)(1− x)θ+1 + p0xθ+1
. (15)

The agent has a wrong direction reaction at sj if Ê(ω|sj)− E(ω) < 0, which occurs

if and only if

λER(ω|sj) + (1− λ)E(ω) < E0(ω).

By Eqs. (12) to (15), the above inequality simplifies to the following,

p0x
θ+1 − (1− p0)(1− x)θ+1

p0xθ+1 + (1− p0)(1− x)θ+1
<

2p0 − 1

λ
. (16)

The agent overreacts to sj if Ê(ω|sj) > EB(ω|sj), which occurs if and only if

λER(ω|sj) + (1− λ)E(ω) > EB(ω|sj).

This inequality simplifies to the following,

p0x
θ+1 − (1− p0)(1− x)θ+1

p0xθ+1 + (1− p0)(1− x)θ+1
>

1

λ

p0x− (1− p0)(1− x)

p0x+ (1− p0)(1− x)
. (17)

The agent underreacts to sj if E0(ω) < Ê(ω|sj) < EB(ω|sj), which occurs if and only

if

2p0 − 1

λ
<

p0x
θ+1 − (1− p0)(1− x)θ+1

p0xθ+1 + (1− p0)(1− x)θ+1
<

1

λ

p0x− (1− p0)(1− x)

p0x+ (1− p0)(1− x)
. (18)

Let t ≡ x/(1−x) > 1 and ℓ(t) ≡ p0t−(1−p0)
p0t+(1−p0)

. Then ℓ(t) is increasing in t. By Eqs. (16)

to (18), a wrong direction reaction occurs if ℓ(tθ+1) < 2p0−1
λ

, underreaction occurs if
2p0−1

λ
< ℓ(tθ+1) < ℓ(t)

λ
, and overreaction occurs if ℓ(tθ+1) > ℓ(t)

λ
.
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First note that limt→1 ℓ(t
θ+1) = 2p0 − 1 and limt→∞ ℓ(tθ+1) = 1. Since ℓ(s)

is increasing, if λ ≤ 2p0 − 1, then the agent reacts in the wrong direction for all

values of x ∈ (1/2, 1]. If λ > 2p0 − 1, then there exists a cutoff c2 ∈ (1/2, 1) such

that ℓ((c2/(1 − c2))
θ+1) = 2p0−1

λ
and the agent reacts in the wrong direction for all

x ∈ (1/2, c2).

Second, note that

ℓ(tθ+1)

ℓ(t)
=
(p0t+ (1− p0))(p0t

θ+1 − (1− p0))

(p0t− (1− p0))(p0tθ+1 + (1− p0))

=1 +
2

p20t
θ+2−(1−p0)2

p0(1−p0)(tθ+1−t)
− 1

.

Let h(t, p0) ≡ p20t
θ+2−(1−p0)2

p0(1−p0)(tθ+1−t)
. We now show that h is first decreasing and then

increasing in t. Note that

ht(t, p0) =
p20t

2θ+2 + (1 + θ)tθ((1− p0)
2 − p20t

2)− (1− p0)
2

(1− p0)p0t2(tθ − 1)2
(19)

we can solve for each t a unique value of p0 ∈ (0, 1) such that ht(t, q0) = 0, and write

this as p∗0(t). In particular,

1/p∗0(t) = 1 +

√
tθ+2(1− tθ + θ)(tθ(1 + θ)− 1)

tθ(1 + θ)− 1
. (20)

Let g(t, p0) denote the numerator of ht(t, p0) in Eq. (19). We can show that for any

t > 1, gt(t, p0) > 0 if p0 = p∗0(t).
66 Since g(1, p0) < 0 when p0 > 1/2 and g(t, p0) > 0

for any t > (θ+ 1)1/θ, it follows that g(t, p0) = 0 for at most one value of t at any p0

(otherwise there exists a root t̂ such that g crosses 0 from above and then gt < 0 at

this point). This further implies that when p0 > 1/2, h is first decreasing and then

increasing in t, and hence the ratio ℓ(tθ+1)/ℓ(t) is first increasing and then decreasing

in t.

Since 2p0−1
λ

= ℓ((c2/(1 − c2))
θ+1) < ℓ(c2/(1−c2))

λ
, by continuity we have 2p0−1

λ
<

ℓ(tθ+1) < ℓ(t)
λ

for t strictly larger than but sufficiently close to c2/(1−c2). Furthermore,

for t sufficiently large, both ℓ(tθ+1) and ℓ(t) are close to 1, so we must have 2p0−1
λ

<

ℓ(tθ+1) < ℓ(t)
λ

for λ < 1. Lastly, notice that for any λ > 2p0−1, we have 1
λ
limt→1 ℓ(t) =

2p0−1
λ

< limt→1 limθ→∞ ℓ(tθ+1) = 1. Therefore, if θ sufficiently large, there exists an

x close to 1/2 such that the agent overreacts. Combining these observations, we

know that there exist c2 ≤ c3 ≤ c4 ≤ 1 such that the agent underreacts when

66Differentiating g yields gt(t, p0) = tθ−1(1 + θ)(θ − 2p0θ + p20(2t
θ+2 + θ − t2(θ + 2))). Plugging

in p0 = p∗0(t) we obtain

gt(t, p
∗
0(t)) = tθ−1(1 + θ)

t2(tθ − 1)2(θ + 2)(tθ(1 + θ)− 1)(
−1 + tθ(1 + θ) +

√
tθ+2(1− tθ + θ)(tθ(1 + θ)− 1)

)2 > 0.
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x ∈ (c2, c3) ∪ (c4, 1), overreacts when x ∈ (c3, c4). In addition, (c2, c3) ∪ (c4, 1) is

non-empty if λ > 2p0 − 1, and (c3, c4) is non-empty if θ is sufficiently large.

Part (i). Next assume p0 < 1/2 and consider a disconfirmatory realization

sj. Then E(ω|sj) > E(ω). As in Part (i), a wrong direction reaction occurs if

ℓ(tθ+1) < 2p0−1
λ

, underreaction occurs if 2p0−1
λ

< ℓ(tθ+1) < ℓ(t)
λ
, and overreaction oc-

curs if ℓ(tθ+1) > ℓ(t)
λ
. Since l(t) is increasing, ℓ(tθ+1) > ℓ(1) = 2p0 − 1 > 2p0−1

λ
,

so a wrong direction reaction is impossible. It remains to determine whether the

agent overreacts or underreacts by comparing ℓ(tθ+1) and ℓ(t)
λ
. Note that when

t < (1 − p0)/p0, we have ℓ(t) < ℓ((1 − p0)/p0) = 0 and thus ℓ(t)
λ

< ℓ(t) < ℓ(tθ+1).

That is, the agent overreacts when x ∈ (1/2, (1 − p0)/p0). When t > (1 − p0)/p0,

we have ℓ(tθ+1) > ℓ(t) > 0. Repeating the steps in the proof of Part (ii), we can

obtain the same expressions as Eqs. (19) and (20). For any t > (1 − p0)/p0, since

ℓ(tθ+1) > ℓ(t) > 0, we know that h(t, p0) > 1 for all p0 ∈ (0, 1/2). However, Eq. (20)

does not have a solution p∗0(t) ∈ (0, 1/2) for any t. So for any p0 ∈ (0, 1/2), h(t, p0)

must be either increasing or strictly decreasing in t for all t > 1. This combined with

the fact that ht((θ+1)1/θ, p0) > 0 for any p0 ∈ (0, 1/2) implies that h(t, p0) is strictly

increasing in t. Therefore, ℓ(tθ+1)/ℓ(t) is strictly decreasing in t for any p0 ∈ (0, 1/2)

and t > (1 − p0)/p0. Moreover, when t is sufficiently large, both ℓ(tθ+1) and ℓ(t)

are close to 1, which implies that ℓ(tθ+1) < ℓ(t)/λ and so the agent underreacts.

Therefore, there exists a cutoff c1 ∈ ((1− p0)/p0, 1) such that the agent overreacts if

x ∈ (0, c1) and underreacts if x ∈ (c1, 1]. □

Proof of Prediction 5. We first prove that there exist the three regions as de-

scribed in Prediction 5. Consider the distorted posterior derived from the first stage,

pR(sj). Note that for all ωi ∈ Ω such that ωi ̸= ωR,

pR(ωR|sj)
pR(ωi|sj)

=

(
pB(ωR|sj)
pB(ωi|sj)

)θ+1

=

(
π(sj|ωR)

π(sj|ωi)

)θ+1

> 1.

Since
∑

ωi∈Ω pR(ωi|sj) =
∑

ωi∈Ω pB(ωi|sj) = 1, it must be that pR(ωR|sj) > pB(ωR|sj) >
1
N
. Since p̂(ωR|sj) = λpR(ωR|sj)+(1−λ) 1

N
, there exists threshold λ1(θ) ∈ (0, 1) such

that p̂(ωR|sj) > pB(ωR|sj) if λ > λ1(θ) and p̂(ωR|sj) < pB(ωR|sj) if 0 ≤ λ < λ1(θ).

Analogously, for all ωi ∈ Ω such that ωi ̸= ωNR,
pR(ωNR|sj)
pR(ωi|sj) =

(
π(sj |ωNR)

π(sj |ωi)

)θ+1

< 1.

It follows that pR(ωNR|sj) < pB(ωNR|sj) < 1
N
. Since p̂(ωNR|sj) = λpR(ωNR|sj) +

(1 − λ) 1
N
, there exists threshold λ2(θ) ∈ (0, 1) such that p̂(ωNR|sj) < pB(ωNR|sj) if

λ > λ2(θ) and p̂(ωNR|sj) > pB(ωNR|sj) if 0 ≤ λ < λ2(θ).

When |Ω| = 2, since it cannot be the case that both ωR and ωNR are overweighed,

we must have λ1(θ) = λ2(θ). We now show that λ1(θ) ≤ λ2(θ) if |Ω| > 2. Note that

pB(ωNR|sj) + pB(ωR|sj) =
π(sj|ωR)p0(ωR) + π(sj|ωNR)p0(ωNR)∑

ω∈Ω π(sj|ω)p0(ω)
=

2

N

where the second equality follows from the uniformity of the prior p0 and the sym-
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metry of the state space. Meanwhile, note that

pR(ωR|sj) + pR(ωNR|sj) =
π(sj|ωR)

θ+1∑
ω∈Ω π(sj|ω)θ+1

+
π(sj|ωNR)

θ+1∑
ω∈Ω π(sj|ω)θ+1

.

Since {ωR, ωNR} = {minΩ,maxΩ} and θ > 0, for all ω ∈ Ω \ {ωR, ωNR} and its

symmetric counterpart ω′ = 1− ω, we have

π(sj|ωR)
θ+1 + π(sj|ωNR)

θ+1 > π(sj|ω)θ+1 + π(sj|ω′)θ+1.

Hence, pR(ωNR|sj)+pR(ωR|sj) > 2/N . It then follows from pR(ωR|sj) > pB(ωR|sj) >
1
N

and pR(ωNR|sj) < pB(ωNR|sj) < 1
N

that

pR(ωR|sj)−
1

N
>

1

N
− pR(ωNR|sj) > 0.

By definition of λ1(θ),

λ1(θ)pR(ωR|sj) + (1− λ1(θ))
1

N
= pB(ωR|sj).

Using the previous inequality, we have

λ1(θ)pR(ωNR|sj) + (1− λ1(θ))
1

N

>
1

N
− λ1(θ)

(
pR(ωR|sj)−

1

N

)
=

2

N
− pB(ωR|sj) = pB(ωNR|sj).

Since

λ2(θ)pR(ωNR|sj) + (1− λ2(θ))
1

N
= pB(ωNR|sj),

it must be that λ1(θ) < λ2(θ).

Moreover, since pR(ωNR|sj) + pR(ωR|sj) > 2/N when θ > 0,

p̂(ωNR|sj) + p̂(ωR|sj) = λ(pR(ωNR|sj) + pR(ωR|sj)) + (1− λ)
2

N
≥ 2

N
,

where inequality holds if λ < 1 and equality holds otherwise. Therefore, for each

θ > 0, the agent underweighs interior states ΩI = Ω \ {ωR, ωNR} for λ > 0 and

neither under- nor overweighs it for λ = 0. □

Statement and proof of Prediction 6.

Prediction 6. Consider the set Ω of symmetric information environments with state

space Ω. For each θ > 0, there exist cutoffs 0 < λ1(θ) < λ2(θ) < 1 such that:

(i) Cognitive-imprecision-dominant: for λ ∈ [0, λ1(θ)), the agent underreacts to all

information environments in Ω.
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(ii) Cognitive complementarity: for each λ ∈ (λ1(θ), λ2(θ)), there exists a positive

measure set of information environments ΩO ⊂ Ω on which the agent overre-

acts and a positive measure set Ω \ ΩO on which the agent underreacts. The

underreaction set includes all environments with a sufficiently diffuse prior p0

such that p0({ω1, ωN}) > c1 for some c1 ∈ (0, 1).

(iii) Representativeness-dominant: for λ ∈ (λ2(θ), 1], the agent overreacts to all

information environments in Ω.

The following figure illustrates Prediction 6 for the four 3-state spaces we consider

in the experiment.

(a) Ω = (0.1, 0.5, 0.9) (b) Ω = (0.2, 0.5, 0.8)

(c) Ω = (0.3, 0.5, 0.7) (d) Ω = (0.4, 0.5, 0.6)

Figure B.1. Illustration of Prediction 6 in symmetric 3-state environments (θ = 0.85)

Proof. Since we consider symmetric information environments, Lemma 1 implies that

the agent never wrong direction reacts. Thus, we focus on distinguishing between

over- and underreaction in this proof.

Part (i). Given the symmetry in the information environment, we focus on signal

realization s2 without loss. Let rR(θ) denote the supremum of rR(s2) over the set of all

possible priors given state space Ω and parameter θ. Since r(s2) = λrR(s2)− (1−λ),

to show the existence of the cognitive-imprecision-dominant region, it suffices to
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show that rR(θ) < ∞ for any θ > 0. Moreover, λ1(θ) is given by the solution to the

following equation, λrR(θ)− (1− λ) = 0.

For any state space Ω and prior p0, the Bayesian posterior is

pB(ωi|s2) =
p0(ωi)ωi∑

ωj∈Ω p0(ωj)ωj

= 2p0(ωi)ωi,

and the interim posterior is

pR(ωi|s2) =
p0(ωi)ω

θ+1
i∑

ωj∈Ω p0(ωj)ω
θ+1
j

.

Without loss of generality, assume N = 2K for a positive integer K (if N is odd,

then we can duplicate the middle state to make the state space even). Note that

rR(s2) + 1 =
ER(ω|s2)− E0(ω)

EB(ω|s2)− E0(ω)

=

∑
ωi∈Ω p0(ωi)ω

θ+2
i /(

∑
ωi∈Ω p0(ωi)ω

θ+1
i )− 1

2∑
ωi∈Ω 2p0(ωi)ω2

i − 1
2

=

∑N
k=K+1 p0(ωk)(ωk − 1/2)(ωθ+1

k − (1− ωk)
θ+1)

4(
∑N

k=K+1 p0(ωk)(ωk − 1/2)2)(
∑N

k=K+1 p0(ωk)(ω
θ+1
k + (1− ωk)θ+1))

. (21)

Since rR(s2) + 1 as a function of p0 is continuous everywhere on ∆(Ω), which is a

compact set, rR(θ) < ∞.

Part (ii) and (iii). Similarly define rR(θ) to be the infimum of rR(s2) over the

set of all possible priors given state space Ω and parameter θ and define λ2(θ) to

be the solution to the following equation, λrR(θ) − (1 − λ) = 0. Since rR(s2) is a

positive and continuous function of p0 everywhere on ∆(Ω), rR(θ) > 0. It follows

that if λ1(θ) < λ < λ2(θ), then there exists a positive measure of priors under which

the agent overreacts and a positive measure under which the agent underreacts.

Moreover, if λ > λ2(θ), then the agent underreacts to any (Ω, p0).

The remainder of this proof shows that given λ ∈ (λ1(θ), λ2(θ)), there exists c1

such that the agent underreacts as long as p0({ω1, ωN}) > c1.

Let a(ωk) ≡ (ωk−1/2)(ωθ+1
k −(1−ωk)

θ+1), b(ωk) ≡ (ωk−1/2)2, c(ωk) ≡ ωθ+1
k +(1−

ωk)
θ+1, and f(ωk) ≡ a(ωk)

2b(ωk)c(ωk)
. Then f(ωk) is the hypothetical value of rR(s2) + 1 if

the state space Ω consists of only 1−ωk and ωk. We now show that for any p0 ∈ ∆Ω,

rR(s2) + 1 ≥ min
k=K+1,...,N

f(ωk). (22)

This obviously holds if N = 2. Suppose N > 2 and Eq. (22) does not hold, then for

any i = K + 1, ..., N , we have

rR(s2) + 1 =

∑N
k=K+1 p0(ωk)a(ωk)

4(
∑N

k=K+1 p0(ωk)b(ωk))(
∑N

k=K+1 p0(ωk)c(ωk))
<

a(ωi)

2b(ωi)c(ωi)
. (23)
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We first show that Eq. (23) cannot hold for all i = K + 1, ..., N when p0 is uniform,

i.e. p0(ωi) = 1/N for any ωi ∈ Ω. Rearrange and then summing up the inequalities,

we obtain

K

(
N∑

k=K+1

b(ωk)c(ωk)

)
−

(
N∑

k=K+1

b(ωk)

)(
N∑

k=K+1

c(ωk)

)
< 0.

This is further equivalent to

N∑
k=K+1

N∑
j=K+1

(b(ωk)− b(ωj)) (c(ωk)− c(ωj)) < 0.

However, this is impossible as both b(ωk) and c(ωk) increase in ωk when ωk > 1/2.

Therefore, Eq. (22) must hold for all N when p0 is uniform. Suppose p0 is not

uniform but p0(ω) is a rational number for each ω ∈ Ω. Then we can create an

information environment (Ω̃, p̃0) such that, for all ωi ∈ Ω, Ω̃ contains ni copies of ωi

and p̃0 assigns a total probability of p0(ωi) to this set. Since the overreaction ratio for

(Ω̃, p̃0) is equal to that for (Ω, p0), we can use the same argument as above to show

that Eq. (22) holds for the original environment (Ω, p0). By continuity, Eq. (22) also

holds when p0(ωi) is an irrational number for some ωi.

It is easy to show that f is a strictly decreasing function of ωk.
67 Therefore,

Eq. (22) implies that rR(s2) + 1 ≥ f(ωN). This minimum is attained when p0

assigns probability 1 to {ω1, ωN}. Since λ ∈ (λ1(θ), λ2(θ)), it follows that the agent

underreacts when p0({ω1, ωN}) = 1. By continuity, there exists c1 ∈ (0, 1) such that

the agent underreacts when p0({ω1, ωN}) > c1. □ □

Statement and proof of Prediction 7. The following prediction is an analogue

of Prediction 6, varying the signal diagnosticity instead of the prior.

Prediction 7. Consider the set ΩN of symmetric information environments with

complexity N and a uniform prior. For each θ > 0, there exist cutoffs 0 < λ1(θ) <

λ2(θ) ≤ 1, with λ2(θ) < 1 iff N is odd, such that:

(i) Cognitive-imprecision-dominant: for λ ∈ [0, λ1(θ)), the agent underreacts to all

information environments in ΩN .

(ii) Cognitive complementarity: for each λ ∈ (λ1(θ), λ2(θ)), there exists a positive

measure set of information environments in ΩN on which the agent overreacts

67Note that f is decreasing in ωk if and only if g(x) ≡ (x−1/2)((1−x)θ+1+xθ+1)
xθ+1−(1−x)θ+1 is increasing in x

when x > 1/2. Differentiating g(x), we have

g′(x) =
xθ+1(xθ+1 − (θ + 1)(1− x)θ)− (1− x)θ+1((1− x)θ+1 − (θ + 1)xθ)

(xθ+1 − (1− x)θ+1)2
.

Note that the numerator can be written as h(x)−h(1−x), where h(x) ≡ xθ+1(xθ+1−(θ+1)(1−x)θ).
Since h(x) is increasing in x, it follows that g′(x) > 0 for x > 1/2.
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Figure B.2. Illustration of Prediction 7 (Ωd = (1−d, 0.5, d) for d ∈ (0.5, 1), uniform prior,
θ = 0.85)

and a positive measure set on which the agent underreacts. The latter set

includes all precise environments with minimum diagnosticity minωi∈Ω di > c1

for some c1 ∈ (1/2, 1).

(iii) Representativeness-dominant: for λ ∈ (λ2(θ), 1], the agent overreacts to all

information environments in ΩN .

Fig. B.2 illustrates this result for a complexity of N = 3. For a given level of cognitive

imprecision, it highlights the diagnosticity of the information environment where the

agent is predicted to switch from overreaction to underreaction.68

Proof. Part (i). Let rR(ΩN , θ) denote the supremum of rR(sj) over ΩN given pa-

rameter θ. Since r(sj) = λrR(sj) − (1 − λ), to show the existence of the cognitive-

imprecision-dominant region, it suffices to show that rR(ΩN , θ) < ∞ for any θ > 0.

Moreover, λ1(θ) is then given by the solution to the following equation, λrR(ΩN , θ)−
(1− λ) = 0. Note that

rR(sj) + 1 =
ER(ω|sj)− E0(ω)

EB(ω|sj)− E0(ω)

=
(
∑

ωi∈Ω ωθ+2
i )/(

∑
ωi∈Ω ωθ+1

i )− 1
2

(
∑

ωi∈Ω ω2
i )/(

∑
ωi∈Ω ωi)− 1

2

,

where rR(sj) > 0 if θ > 0. Letting K = N/2 if N is even and K = (N − 1)/2 if N is

odd,

rR(sj) + 1 =

∑N
k=K+1

(
ωk − 1

2

)
(wθ+1

k − (1− ωk)
θ+1)

4
N

(∑
ωi∈Ω ωθ+1

i

) [∑N
k=K+1

(
ωk − 1

2

)2]
68The more flexible model of cognitive imprecision in Augenblick et al. (2022) also predicts

overreaction to noisy signals and underreaction to precise signals. See Appendix C for discussion.
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≤ 1

4
(
1
2

)θ+1

∑N
k=K+1

(
ωk − 1

2

)
(wθ+1

k − (1− ωk)
θ+1)∑N

k=K+1

(
ωk − 1

2

)2 .

It suffices to show that

h(ωk) ≡
(
ωk − 1

2

)
(wθ+1

k − (1− ωk)
θ+1)(

ωk − 1
2

)2
is bounded above for any ωk ∈ (1/2, 1). This follows from the fact that h(ωk) is a

continuous positive function over (1/2, 1] and, in addition,

lim
ωk→1/2

h(ωk) = lim
ωk→1/2

wθ+1
k − (1− ωk)

θ+1(
ωk − 1

2

)
= lim

ωk→1/2
(θ + 1)(wθ

k + (1− ωk)
θ) = (θ + 1)

(
1

2

)θ−1

< ∞.

Part (ii). From Part (i), we know that for any θ > 0 and λ > λ1(θ), there

exists a set of information environments where r(sj) is strictly positive and the agent

overreacts. This set has a positive measure because r(sj) is a continuous function of

the information structure.

Let rR(ΩN , θ) denote the infimum of rR(sj) over ΩN given parameter θ. We

show below that rR(ΩN , θ) = 0 for any θ > 0 and N even, and rR(ΩN , θ) > 0

for any θ > 0 and N odd. Let λ2(θ) be the solution to the following equation,

λrR(ΩN , θ) − (1 − λ) = 0. Then λ2(θ) = 1 if N is even, and λ2(θ) < 1 if N is odd.

By definition, rR(ΩN , θ) < rR(ΩN , θ), so λ1(θ) < λ2(θ).

Suppose N is even and N = 2K. Then letting ωK+1, ..., ωN converge to 1 from

below, we have limωK+1,...,ωN→1 rR(sj) + 1 = 1. Hence in this case rR(ΩN , θ) =

0. Moreover, notice that in symmetric environments, the minimum diagnosticity

minωi∈Ω di > 1/2 only if N is even. Therefore, it follows from limωK+1,...,ωN→1 rR(sj)+

1 = 1 and r(sj) = λrR(sj) − (1 − λ) that for each θ > 0 and λ < 1, there exists

c1 ∈ (1/2, 1) such that r(sj) < 0 in all environments with minωi∈Ω di > 1/2.

Suppose N is odd and N = 2K + 1, then

rR(sj) + 1 =

∑N
k=K+1

(
ωk − 1

2

)
(wθ+1

k − (1− ωk)
θ+1)

4
N

(∑
ωi∈Ω ωθ+1

i

) [∑N
k=K+1

(
ωk − 1

2

)2]
=

∑N
k=K+2

(
ωk − 1

2

)
(wθ+1

k − (1− ωk)
θ+1)

4
N

(
(1/2)θ+1 +

∑
i ̸=K+1 ω

θ+1
i

) [∑N
k=K+2

(
ωk − 1

2

)2] .
Fix any ω ∈ (1/2, 1), then when maxωi∈Ω ωi = ωN ≥ ω,

rR(sj) + 1 = ξ

∑N
k=K+2

(
ωk − 1

2

)
(wθ+1

k − (1− ωk)
θ+1)

4
N−1

(∑
i ̸=K+1 ω

θ+1
i

) [∑N
k=K+2

(
ωk − 1

2

)2] > ξ,
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where ξ ≡ N
N−1

∑
i ̸=K+1 ω

θ+1
i

(1/2)θ+1+
∑

i̸=K+1 ω
θ+1
i

> 1 since ωi > 1/2,∀i > K + 1 and the strict

inequality above follows from the fact that the term multiplied by ξ is equal to the

value of r̃R(sj) + 1 for an alternative state space Ω \ {ωK+1} and it is strictly larger

than 1 when θ > 0. Furthermore, ξ is larger than and bounded away from 1 since

ωN ≥ ω > 1/2. Therefore, rR(sj) + 1 is bounded below away from 1.

Meanwhile, when maxωi∈Ω ωi = ωN < ω,

rR(sj) + 1 = ξ

∑N
k=K+2

(
ωk − 1

2

)
(wθ+1

k − (1− ωk)
θ+1)

4
N−1

(∑
i ̸=K+1 ω

θ+1
i

) [∑N
k=K+2

(
ωk − 1

2

)2]
>

∑N
k=K+2

(
ωk − 1

2

)
(wθ+1

k − (1− ωk)
θ+1)

4
N−1

(∑
i ̸=K+1 ω

θ+1
i

) [∑N
k=K+2

(
ωk − 1

2

)2] ≡ g(ωK+2, ..., ωN).

Again, the right-hand side is equal to the value of r̃R(sj) + 1 for an alternative state

space Ω \ {ωK+1} and it is strictly larger than 1 when θ > 0. In addition, it is a

continuous function over (1/2, ω)K , and

lim
ωK+2,...,ωN→1/2

g(ωK+2, ..., ωN)

= lim
ωN→1/2

(
ωN − 1

2

)
(wθ+1

N − (1− ωN)
θ+1)

4
N−1

(
(2K − 2)

(
1
2

)θ+1
+ (ωθ+1

N + (1− ωN)θ+1)
) (

ωN − 1
2

)2
= lim

ωN→1/2

(θ + 1) (wθ
N + (1− ωN)

θ)

4
N−1

(
(2K − 2)

(
1
2

)θ+1
+ (ωθ+1

N + (1− ωN)θ+1)
) = θ + 1 > 1,

where the second equality follows from L’Hopital’s rule. So in this case we again

have rR(sj) bounded strictly away from 0 for any θ > 0. In sum, for any θ > 0 and

N odd, we have rR(ΩN , θ) > 0.

Part (iii). From Part (ii), we know that for any θ > 0 and λ > λ2(θ), r(sj) =

λrR(sj)− (1− λ) > 0 holds and thus the agent overreacts. □

C Model Variations

C.1 Comparison with Augenblick et al. (2022)

In this section, we compare our two-stage model with the cognitive imprecision model

proposed by Augenblick et al. (2022) (abbreviated as ALT below). In contrast

to our multi-state setting, ALT restricts attention to a setting with binary states

{ω0, ω1}. In their model, the agent perceives the strength of a signal s, denoted

by S =
∣∣∣ln(P (s|ω=ω1)

P (s|ω=ω0)

)∣∣∣, with cognitive imprecision. Similar to our agent in the

processing stage, their agent is endowed with a “cognitive prior” about the loga-

rithm of the signal strength and updates their belief after observing a noisy rep-

resentation of it denoted by r. This leads to perceived signal strength given by

log Ŝ(r) = (1 − η) log S̄ + η · r, where S̄ is the prior mean over signal strengths and

η is a constant whose value depends on the amount of cognitive noise. Since the
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agent biases towards a moderate level of signal strength, it is clear that similar to

our Prediction 3, this model also predicts overreaction to noisy signals (low signal

strength) and underreaction to precise signals (high signal strength).

Apart from the multi-state versus binary-state settings, there are two major con-

ceptual differences between ALT and our model. First, while our model imposes

cognitive noise on the agent’s posterior directly, the agent in ALT first perceives the

signal strength with cognitive noise and then applies Bayes’ rule using the correct

prior. Hence, while our processing stage implies both base-rate neglect and signal-

diagnosticity neglect, ALT only implies the latter. It follows that ALT does not

predict our Prediction 4, namely, the agent may update in the wrong direction after

observing noisy confirmatory signals.

Second, although both ALT and our model predict underreaction to precise sig-

nals and overreaction to noisier signals, the driving mechanisms are fundamentally

different: in ALT this results from the assumption of a moderate cognitive default,

while in our model this is generated by the interaction between channeled atten-

tion and cognitive imprecision. Distinguishing the two mechanisms is challenging in

binary-state environments because of similar predictions in beliefs. This motivates

the next section, where we extend an adapted version of ALT to multi-state settings

and compare its predictions with our two-stage model.

C.2 Flexible Cognitive Imprecision Model

We now explore a more general version of the processing stage of our model, al-

lowing the cognitive default to deviate from the ignorance prior and vary by the

signal realization and state space complexity. When restricted to binary informa-

tion environments, this flexible cognitive imprecision model captures the same spirit

as Augenblick et al. (2022).69 We derive the predictions of the flexible cognitive

imprecision model and demonstrate that despite introducing more parameters, the

flexible cognitive imprecision model does not fit the experimental data as well as

our two-stage model, especially in complex information environments. We focus on

information environments with a uniform prior for a clean comparison.

Consider an agent who perceives signal diagnosticities with a flexible form of

cognitive imprecision: his prior belief about the objective posterior centers around

cognitive default p0(sj, N) ∈ ∆(Ω), which may vary according to the signal realiza-

tion sj and the complexity of the state space, N ≡ |Ω| denotes. The agent combines

this prior belief with a noisy representation extracted from the information environ-

ment, resulting in an average subjective posterior given by

p̂(sj) ≡ λpB(sj) + (1− λ)p0(sj, N). (24)

69ALT incorporates cognitive imprecision in signal strength exponentially while the flexible cog-
nitive imprecision model considered here incorporates it linearly, but this does not affect the main
qualitative predictions.
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When p0(sj, N) ≡ p0 for all sj and N , this reduces to the processing stage of our

model. Allowing the cognitive default to deviate from the “ignorance prior” can

capture the notion that the agent thinks that the signal should be somewhat infor-

mative by default. To maintain discipline, we make the following assumptions. We

assume that p0(sj, N) takes the value of a Bayesian posterior derived from a default

information environment with a symmetric default state space Ω(N) ≡ {ω1, ..., ωN}
and a uniform default prior p0. That is, p0(sj, N) = B(sj, Ω(N), p0), where B de-

notes the Bayesian operator.70 We assume 0 < ω1 ≤ ... ≤ ωN < 1, which rules

out the case that the cognitive default assigns probability 0 to some states. More-

over, we assume that the cognitive default is symmetric across signal realizations

and it aligns with the direction of the signal realization relative to a uniform prior,

(E(ω|sj, N) − 1/2)(E(ω|sj) − 1/2) ≥ 0. For example, suppose the agent’s default

state space for binary information environments is Ω(2) = {0.3, 0.7}. Upon observing

s2, he compresses his posterior towards a cognitive default with p0(ω1|s2, N) = 0.3;

upon observing s1, he biases towards p0(ω1|s1, N) = 0.7. Compared to the cognitive-

imprecision-only model, this model has six additional parameters for the set of infor-

mation environments we considered.71

Similar to ALT and our two-stage model, the flexible cognitive imprecision model

predicts that the agent tends to overreact to precise signals and underreact to noisy

signals (Predictions 3 and 7). However, the flexible cognitive imprecision model does

not predict our key result (Prediction 1) that higher complexity leads to more overre-

action unless substantial assumptions are imposed on how the cognitive default varies

across complexities. For illustration, suppose the agent’s default state space for com-

plexity N = 2 is given by Ω(2) = {0.3, 0.7}. Then he overreacts in a binary-state

information environment with state space {1−d, d} iff the signal diagnosticity d > 0.5

is below 0.7 and underreacts iff d is above 0.7. Now moving on to more complex in-

formation environments, the agent does not necessarily overreact more. For example,

given a natural choice of the 3-state default state space, Ω(3) = {0.3, 0.5, 0.7}, the
agent overreacts in the more complex environment with {1− d, 0.5, d} if and only if

he also overreacts in the simpler environment with {1− d, d}.
Analyzing the subjective belief state-by-state provides the simplest test to dis-

tinguish the flexible cognitive imprecision model and the two-stage model. Predic-

tion 8 below shows that the agent always distorts his probabilistic assessments of

the most and least representative states in different directions—underweighing one

and overweighing the other. In addition, if the signal diagnosticity associated with

70For any information environment (Ω,p0) and signal realization sj , let B(sj , Ω, p0) represents
the implied Bayesian posterior.

71This includes one diagnosticity parameter for binary-state information environments, one for
3-three environments, two for 4-state environments, and another two for 5-state environments.
Notably, the number of free parameters increases as one considers more information structures with
higher complexities.

74



the extreme states is sufficiently high, the agent underweighs the most representative

state and overweighs the least representative state since cognitive imprecision pulls

his posterior back to the moderate cognitive default. The proof of Prediction 8 is

straightforward.72

Prediction 8 (Flexible Cognitive Imprecision Model). Fix any symmetric informa-

tion environment (Ω, p0) with |Ω| = N ≥ 2 and a uniform prior. Consider an

agent who updates according to a flexible cognitive imprecision model with param-

eter λ ∈ (0, 1) and default state space Ω(N). Given a fixed set of interior states

Ω \ {ωR, ωNR}, there exists a cutoff d ∈ (1/2, 1) such that:

(i) If ωR = 1− ωNR > d, the agent underweighs ωR and overweighs ωNR.

(ii) If ωR = 1− ωNR < d, the agent overweighs ωR and underweighs ωNR.

Moreover, the agent neither under- nor overweighs the set of interior states ΩI =

Ω \ {ωR, ωNR}.

Fig. C.1 depicts the predictions of the flexible noise model, aggregating across

uniform prior information environments used in experiments. In contrast, as shown

in Prediction 5, the two-stage model allows the agent to overweigh both the most

and the least representative state, as well as overweigh the most representative state

and underweigh the least representative state even after observing signals with high

diagnosticity at the extreme states. Comparing Fig. C.1 and Fig. 7, we observe that

the data is consistent with the two-stage model and inconsistent with the flexible

cognitive imprecision model.

We also compute the completeness and the restrictiveness of the flexible cognitive

imprecision model. As shown in Table C.1, the flexible cognitive model achieves

100% completeness in simple binary environments and 65% completeness in complex

environments with more than two states. Note that the former is unsurprising since

even the processing stage of our model alone achieves perfect completeness in simple

environments, and the flexible cognitive imprecision model strictly nests it. However,

it is noteworthy that the two-stage model achieves much higher completeness in

complex environments (92% versus 65%). This is rather remarkable considering the

fact that our two-stage model only adds one single representativeness parameter to

the processing-only model whereas the flexible cognitive imprecision model adds a

total of six more parameters. This is also reflected from the restrictiveness analysis—

the flexible cognitive model is less restrictive than both the two-stage model and the

processing-only model in all environments.

72Note that p̂(ωi|sj) = λpB(ωi|sj) + (1 − λ)p0(ωi|sj , N) = 2
N (λωi + (1− λ)ωi) . Letting d =

ωN = 1−ω1, then the agent overweighs ωNR and underweigh ωR if and only if ωR = 1−ωNR > d,
and the opposite holds if and only if ωR = 1− ωNR < d.
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Figure C.1. The predictions of the flexible cognitive imprecision model on the
difference between subjective posterior beliefs and the Bayesian posterior beliefs for
the least and most representative states and states that are in between, aggregating
across uniform prior informational environments used in the experiment. Structural
estimates of the cognitive imprecision parameter λ and default state spaces are used
to generate the plotted predictions, where λ = 0.5, Ω(2) = {0.49, 0.51}, Ω(3) =
{0.3, 0.5, 0.7}, Ω(4) = {0.2, 0.4, 0.6, 0.8}, Ω(5) = {0.2, 0.4, 0.5, 0.6, 0.8}.

Table C.1. Completeness and Restrictiveness

Completeness Restrictiveness
2 states > 2 states 2 states > 2 states

Flexible Cognitive Noise Model 1.00 0.65 0.70 0.89
(0.07) (0.03) (0.00) (0.00)

Notes: Includes all information environments listed in Table D.1 except for the 11-state com-
plexity; includes wrong direction reactions. Restrictiveness estimated from 1000 simulations.

C.3 Alternative Salience Cues

Under an arbitrary salience function R(ωi, sj), the mental representation is

π̂(sj|ωi) = π(sj|ωi)R(ωi, sj)
θ

and

pR(ωi|sj) =
π(sj|ωi)R(ωi, sj)

θp0(ωi)∑
ωk∈Ω π(sj|ωk)R(ωk, sj)θp0(ωk)

.

As before, this generates subjective posterior belief p̂(sj) = λpR(sj) + (1− λ)p0.

No Salience Cues. Suppose that no salience cues are present and attention is

channeled as-if randomly. Each state is equally likely to be attended to first, and all

states that are not attended to first receive equal attention. This can be modeled

as R(ωi, sj) = α > 1 when ωi is attended to first and R(ωi, sj) = 1 when ωi is not

attended to first.73 Letting pR,l(ωi|sj) and p̂l(ωi|sj) denote the non-noisy posterior

73Setting the attention weight on the not-first-attended-to states equal to one is a normalization.
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and subjective posterior, respectively, when state ωl is attended to first, this yields

pR,i(ωi|sj) =
π(sj|ωi)p0(ωi)

π(sj|ωi)p0(ωi) +
(
1
α

)θ∑
k ̸=i π(sj|ωk)p0(ωk)

and p̂i(ωi|sj) = λpR,i(ωi|sj) + (1− λ)p0(ωi) when ωi is attended to first, and

pR,l(ωi|sj) =
π(sj|ωi)p0(ωi)

αθπ(sj|ωl)p0(ωl) +
∑

k ̸=l π(sj|ωk)p0(ωk)

and p̂l(ωi|sj) = λpR,l(ωi|sj) + (1− λ)p0(ωi) when ωl ̸= ωi is attended to first.

We can compute the average posterior for each state ωi across all possible atten-

tion allocations. The average subjective posterior that the state is ωi is

p̂(ωi|sj) ≡ E[p̂l(ωi|sj)] =
1

N

∑
ωl∈Ω

p̂l(ωi|sj).

The relevant objective posterior comparison is pB(ωi|sj) as previously defined. Anal-

ogously, the average overreaction ratio across attention allocations is:

r(sj) ≡ E[rl(sj)] =
1

N

∑
ωl∈Ω

rl(sj),

where rl(sj) ≡ (Êl(ω|sj)−EB(ω|sj))/(EB(ω|sj)−E0(ω)) and Êl(ω|sj) ≡
∑

ωi∈Ω ωip̂l(ωi|sj).
Also relevant is the average posterior for a given level of attention (i.e., click

position). Again this average is taken across all attention allocations, but now with

respect to a random variable denoting the state in a given click position. Let ωF be

a random variable that denotes the first-attended-to-state (i.e., ωF = ωi when ωi is

attended to first), and ΩNF = Ω \{ωF} denote the set of not-first-attended-to states.

The average subjective posterior for the first-attended-to state is

E[p̂(ωF |sj)] =
1

N

∑
ωi∈Ω

p̂i(ωi|sj)

and the average subjective posterior for the set of remaining states is

E[p̂(ΩNF |sj)] =
1

N

∑
ωi∈Ω

∑
ωl ̸=ωi

p̂i(ωl|sj),

where
∑

ωl ̸=ωi
p̂i(ωl|sj) is the subjective posterior of the set of not-first-attended-

to states {ωl|l ̸= i} when ωi is attended to first. The relevant objective posterior

comparison for the first-attended-to state is the average objective posterior across all

first-attended-to states (i.e., all states):

E[pB(ωF |sj)] =
1

N

∑
ωi∈Ω

pB(ωi|sj) =
1

N
,
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where the second equality follows since the objective posterior sums to one across

states. Analogously, the relevant objective posterior comparison for the set of re-

maining states is

E[pB(ΩNF |sj)] =
1

N

∑
ωi∈Ω

∑
ωl ̸=ωi

pB(ωl|sj) =
N − 1

N
.

Prediction 9. Consider a symmetric information environment (Ω, p0) with a uni-

form prior and suppressed representativeness. On average across attention alloca-

tions, the agent overweighs the state she attends to first and underweighs the set of

remaining states, E[p̂(ωF |sj)] > E[pB(ωF |sj)] and E[p̂(ΩNF |sj)] < E[pB(ΩNF |sj)].

Proof. Since 1/α < 1, we have pR,i(ωi|sj) > pB(ωi|sj), and similarly since α > 1,

pR,l(ωi|sj) < pB(ωi|sj). Hence,

E[p̂(ωF |sj)] =
1

N

∑
ωi∈Ω

p̂i(ωi|sj) =
1

N
λ
∑
ωi∈Ω

pR,i(ωi|sj) +
1

N
(1− λ)

∑
ωi∈Ω

p0(ωi)

=
1

N
λ
∑
ωi∈Ω

pR,i(ωi|sj) +
1

N
(1− λ)

∑
ωi∈Ω

pB(ωi|sj)

>
1

N

∑
ωi∈Ω

pB(ωi|sj) = E[pB(ωF |sj)].

The third equality follows from
∑

ωi∈Ω p0(ωi) =
∑

ωi∈Ω pB(ωi|sj) = 1 and the last in-

equality follows from pR,i(ωi|sj) > pB(ωi|sj). It is then immediate that E[p̂(ΩNF |sj)] =
1− E[p̂(ωF |sj)] < 1− E[pB(ωF |sj)] = E[pB(ΩNF |sj)]. □

Prediction 10. Consider a symmetric information environment (Ω, p0) with a uni-

form prior and suppressed representativeness. For any θ > 0, on average across

attention allocations:

(i) the agent underweighs the most representative state and overweighs the least

representative state, p̂(ωR|sj) > pB(ωR|sj) and p̂(ωNR|sj) > pB(ωNR|sj) for all

sj ∈ S;
(ii) the agent exhibits underreaction, r(sj) ∈ [−1, 0) for sj ∈ S.

Proof. Part (i). Assume sj = s2. Then the average salience-distorted posterior can

be simplified to

pR(ωi|s2) = ωi ·
1

N

(
αθ − 1

αθωi +
∑

ωi ̸=ωl
ωl

+
∑
ωl∈Ω

1

ωlαθ +
∑

ωk ̸=ωl
ωk

)
.

Hence, pR(ωi|s2)/ωi decreases as i increases. Since
∑

ωi∈Ω pR(ωi|s2) = 2
N
(
∑

ωi∈Ω ωi) =

1, it follows that pR(ω1|s2) > 2
N
ω1 and pR(ωN |s2) < 2

N
ωN . Therefore, p̂(ω1|s2) =

λpR(ω1|s2) + (1− λ) 1
N

> 2
N
ω1 = pB(ω1|s2) and p̂(ωN |s2) = λpR(ωN |s2) + (1− λ) 1

N
<

2
N
ωN = pB(ωN |s2). The argument is analogous for s1.
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Part (ii). Again assume sj = s2. Similar reasoning as in Part (i) implies that there

exists m ∈ {1, ..., N} such that pR(ωi|s2) ≤ pB(ωi|s2) when i ≤ m and pR(ωi|s2) >
pB(ωi|s2) when i > m. Moreover, pR(ωi|s2) < pR(ωl|s2) for any i < l. So both pB(ωi)

and pR(ωi) are strictly increasing in i and pB first order stochastically dominates pR,

leading to E0(ω) < ER(ω|s2) < EB(ω|s2). Note that

r(s2) =
1

N

∑
ωl∈Ω

(Êl(ω|s2)− E0(ω))− (EB(ω|s2)− E0(ω))

(EB(ω|s2)− E0(ω))

=

1
N

(∑
ωl∈Ω(Êl(ω|s2)− E0(ω))

)
− (EB(ω|s2)− E0(ω))

(EB(ω|s2)− E0(ω))

= λ
1
N

(∑
ωl∈Ω(ER,l(ω|s2)− E0(ω))

)
− (EB(ω|s2)− E0(ω))

(EB(ω|s2)− E0(ω))

= λ
(ER(ω|s2)− E0(ω))− (EB(ω|s2)− E0(ω))

(EB(ω|s2)− E0(ω))
.

It follows from E0(ω) < ER(ω|s2) < EB(ω|s2) that −1 < r(s2) < 0. The argument

is analogous for s1. □

Visual & Goal-Directed Salience. This is similar to the previous case without

the random allocation of attention. Suppose a visual or goal-directed salience cue is

present on state ωi. This can be modeled as R(ωi, sj) = α > 1 and R(ωl, sj) = 1 for

l ̸= i, yielding

pR(ωi|sj) =
π(sj|ωi)p0(ωi)

π(sj|ωi)p0(ωi) +
(
1
α

)θ∑
k ̸=i π(sj|ωk)p0(ωk)

,

p̂(ωi|sj) = λpR(ωi|sj) + (1− λ)p0(ωi),

pR(ωl|sj) =
π(sj|ωl)p0(ωl)

αθπ(sj|ωl)p0(ωl) +
∑

k ̸=l π(sj|ωk)p0(ωk)
.

and p̂(ωl|sj) = λpR(ωl|sj) + (1− λ)p0(ωl).

Prediction 11. Consider a symmetric information environment (Ω, p0) with a uni-

form prior, suppressed representativeness, and an alternative salience cue on state

ωS. Then for any θ > 0, there exists a λ(θ) such that for λ ∈ (λ(θ), 1]:

(i) the agent overweighs the salient state ωS and underweighs each other state

ωi ̸= ωS;

(ii) if ωS is the most representative state, the agent exhibits overreaction, r(sj) > 0

for sj ∈ S.
(iii) if ωS is the least representative state, the agent exhibits underreaction or wrong

direction reaction, r(sj) < 0 for sj ∈ S.

When representativeness is not suppressed and there is an alternative salience
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cue on a non-representative state, then the extent to which the agent overweighs the

representative state versus the other salient state will depend on the relative strength

of the two salience cues. If the alternative salience cue is on the least representative

state, then it will reduce the extent of overreaction relative to a setting with no alter-

native salience cue. Whether it generates underreaction or wrong direction reaction

again depends on its relative strength.

Proof. Part (i). Since α > 1, pR(ωS|sj) > pB(ωS|sj) and pR(ωi|sj) < pB(ωi|sj) for

all i ̸= S. By continuity, p̂(ωS|sj) > pB(ωS|sj) and p̂(ωi|sj) < pB(ωi|sj) for all i ̸= S

when λ is sufficiently close to 1.

Part (ii). Suppose sj = s2 and i = N so that ωS is the most representative state.

Since pR first-order stochastically dominates pB, we have ER(ω|sj) > EB(ω|sj). By

continuity, for λ sufficiently close to 1, Ê(ω|sj) > EB(ω|sj) and thus the agent

exhibits overreaction with r(sj) > 0. The argument is analogous for the case of

sj = s1.

Part (iii). Finally, suppose sj = s2 and i = 1 so that ωS is the least represen-

tative state. Then in this case pB first-order stochastically dominates pR, and thus

ER(ω|sj) < EB(ω|sj). Since E0(ω) = 1/2 < EB(ω|sj), it follows that the agent

exhibits underreaction or wrong direction reaction, r(sj) < 0. The argument is anal-

ogous for the case of sj = s1. □
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D Additional Experimental Details and Analyses

D.1 Experimental Details

Table D.1. Information environments used in experiments

Complexity |Ω| Prior p0 Information Structure Ω

2 states p0(ω1) ∈ {0.3, 0.5, 0.7} Pr(r|ω2) ∈ {0.6, 0.7, 0.8, 0.9}
p0(ω2) = 1− p0(ω1) Pr(r|ω1) = 1− Pr(r|ω2)

3 states p0(ω1) ∈ {0.25, 0.33, 0.4} Pr(r|ω3) ∈ {0.6, 0.7, 0.8, 0.9}
p0(ω2) = 1− 2p0(ω1) Pr(r|ω2) = 0.5

p0(ω3) = p0(ω1) Pr(r|ω1) = 1− Pr(r|ω3)

4 states p0(ωi) = 0.25 (Pr(r|ω3), P r(r|ω4)) ∈ {(0.55, 0.6),
∀ωi ∈ Ω (0.6, 0.7), (0.55, 0.7), (0.7, 0.8),

(0.6, 0.8), (0.55, 0.8), (0.8, 0.9),

(0.7, 0.9), (0.6, 0.9), (0.55, 0.9)}
Pr(r|ω2) = 1− Pr(r|ω3)

Pr(r|ω1) = 1− Pr(r|ω4)

5 states p0(ωi) = 0.2 (Pr(r|ω4), P r(r|ω5)) ∈ {(0.55, 0.6),
∀ωi ∈ Ω (0.6, 0.7), (0.55, 0.7), (0.7, 0.8),

(0.6, 0.8), (0.55, 0.8), (0.8, 0.9),

(0.7, 0.9), (0.6, 0.9), (0.55, 0.9)}
Pr(r|ω3) = 0.5

Pr(r|ω2) = 1− Pr(r|ω4)

Pr(r|ω1) = 1− Pr(r|ω5)

11 states p(ωi) = 1/11 Pr(r|ωi) = (i− 1)/10

∀ωi ∈ Ω ∀i ∈ {1, ..., 11}

Notes: States are ordered by number of red balls, with ω1 corresponding to the bag with the fewest

red balls, and so on up through ωN corresponding to the bag with the most red balls. All environ-

ments are symmetric, aside from the 2-state environments with p0(ω1) ∈ {0.3, 0.7}.

Discussion of Measurement. Experimental studies on belief-updating often mea-

sure over- and underreaction by running the so-called Grether regression (Grether

1980), which decomposes the logarithm of the posterior odds ratio into the logarithm

of the prior ratio and the logarithm of the signal likelihood,

log
p̂(ω2|sj)
p̂(ω1|sj)

= c1 log
p0(ω2)

p0(ω1)
+ c2 log

π(sj|ω2)

π(sj|ω1)
.

These studies focus on binary state spaces in which the posterior belief can be sum-

marized by a single likelihood ratio. This is no longer the case with more than two

states where multiple likelihood ratios are needed to capture all distinct pairs of
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states. Adapting the Grether regression to the multi-state setting yields that

log
p̂(ωi|sj)
p̂(ωk|sj)

= c̃1 log
p0(ωi)

p0(ωk)
+ c̃2 log

π(sj|ωi)

π(sj|ωk)
,

where i, k ∈ {1, ..., N} and i > k. However, this imposes a strong assumption on

the underlying distortionary force, namely that the agent distorts the prior odds and

signal likelihoods of each pair of states in an identical way, which is clearly inconsistent

with our experimental data as participants’ reactions to different states are often non-

monotone (see Section 3.4).74 Furthermore, the Grether regression imposes a log-

linear structure in the decomposition of over- and underreaction into prior distortion

and signal likelihood distortion. While our measures based on expectations and

state-by-state belief movement do not aim to distinguish between prior-based and

signal-based distortions, we believe that they serve as better measures of over- and

underreaction in our setting since they are non-parametric and thus free from the

restrictions mentioned above.

One potential concern with using the overreaction ratio r(s) is that changes in

complexity and the information structure also change the Bayesian benchmark. Since

the measure of overreaction used in r(s) is defined relative to the Bayesian benchmark,

we may find a shift towards overreaction if participants use a constant heuristic

that reports the same posterior belief independently of changes in the information

environment or are subject to some version of partition dependence (Fox, Bardolet,

and Lieb 2005; Tversky and Koehler 1994; Benjamin 2019).75 We address this concern

in several ways. First, the state-by-state analysis reported in Section 3.4 is not

subject to this issue as it tests the predictions of our model for each state in the

information environment; for example, Fig. D.4 shows that beliefs do not follow a

simple information-independent heuristic. Second, Section 4 presents evidence for

our framework in a setting that keeps the information environment constant, which

rules out mechanisms such as partition dependence.

74For example, this assumption implies that under a uniform prior (so that c̃1 does not matter),
the agent either exaggerates all the posterior odds (c̃2 > 1) or understates all posterior odds (c̃2 < 1).
This is strongly rejected by our data even when there are only three states. For instance, when
|Ω| = 3 and the prior is uniform, participants often overweigh both ω1 and ω3 and underweigh ω2,

suggesting that participants exaggerate log π(s2|ω3)
π(s2|ω2)

and understate log π(s2|ω2)
π(s2|ω1)

.
75Partition dependence leads to subadditivity of judgments, where people place a greater likeli-

hood on an event when it is partitioned into mutually exclusive sub-events. Tversky and Koehler
(1994) first demonstrated this phenomenon and offered Support Theory as the explanation, which
posits that judgment likelihoods are a reflection of the evidence that ‘comes to mind’ when events are
described. Partition dependence emerges from Support Theory because the description of the sub-
events increases people’s perceived likelihood of each event, thereby increasing their total perceived
likelihood.
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D.2 Structural Estimation

Aggregate-Level Estimation. We refer to the model-predicted posterior belief

given parameter values θ and λ as a model prediction and denote it by p̂θ,λ (see

Eq. (7)). This prediction maps each information environment (Ω, p0) and signal re-

alization sj to a subjective posterior distribution p̂θ,λ(sj;Ω, p0) ∈ ∆(Ω). We search

a grid of parameters for the values that minimize the weighted sum of distances be-

tween the participants’ reported posteriors and the model-predicted posteriors across

all trials. We measure the distance between a reported posterior and a predicted pos-

terior by the Kullback-Leibler (henceforth KL) divergence of the reported posterior

from the predicted posterior.76 This is a common measure of the statistical distance

between two probability distributions. Since the KL divergence is undefined when

p̂θ,λ(ωi|sj;Ω, p0) = 0, we restrict our analysis to information environments that gen-

erate predicted posteriors with full support on Ω. Specifically, we include trials for

all information environments listed in Table D.1 except for the 11-state complexity.

The results are summarized in Table D.2.

Table D.2. Aggregate-level estimates of θ and λ

θ 95% CI λ 95% CI
Parameter Estimates 0.85 (0.82, 0.92) 0.70 (0.69, 0.70)

Notes: Parameter estimates that minimize the average KL divergence at the aggregate
level. Includes all information environments listed in Table D.1, except for the 11-state
complexity; excludes wrong direction reactions. The 95% confidence intervals are ob-
tained from 300 bootstrap samples.

We present two robustness checks for our structural estimation. First, we estimate

the parameters θ and λ for a prediction loss function that minimizes the average

quadratic mean difference between the expected state under the reported posterior

and predicted posterior.77 We chose the KL divergence as our primary measure since

it is independent of the values of the states, whereas the quadratic difference places

a larger weight on higher states.

Table D.3. Structural Estimation with Quadratic Mean Loss Function

θ 95% CI λ 95% CI

Parameter Estimates 0.39 (0.18, 0.92) 0.79 (0.68, 0.86)

Notes: Parameter estimates that minimize the average quadratic mean difference at the aggre-

gate level. Includes all information environments listed in Table D.1, except for the 11-state

complexity; excludes wrong direction reactions. The 95% confidence intervals are obtained

from 300 bootstrap samples.

76The KL divergence of reported posterior p̂(sj ;Ω, p0) from predicted posterior p̂θ,λ(sj ;Ω, p0) is
given by

∑
ωi∈Ω p̂(ωi|sj ;Ω, p0) log(p̂(ωi|sj ;Ω, p0)/p̂θ,λ(ωi|sj ;Ω, p0)).

77The quadratic mean difference between reported posterior p̂(sj ;Ω, p0) and predicted posterior

p̂θ,λ(sj ;Ω, p0) is given by
(∑

ωi∈Ω ωi (p̂(ωi|sj ;Ω, p0)− p̂θ,λ(ωi|sj ;Ω, p0))
)2
.
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Second, we estimate the parameters for information environments with a sym-

metric prior. Specifically, we exclude information environments with two states and

either a 30/70 or a 70/30 prior. The motivation behind this exercise stems from the

model prediction that the agent may react in the wrong direction under an asym-

metric prior (Prediction 4). In our main analysis, we drop wrong direction reactions.

This could potentially lead to an underestimation of cognitive noise. By excluding

these information environments, we can drop wrong direction reactions without in-

troducing such a bias. The following table demonstrates that this exclusion does not

meaningfully affect the parameter estimates.

Table D.4. Structural Estimation for Symmetric Priors

θ 95% CI λ 95% CI

Parameter Estimates 0.96 (0.88, 0.99) 0.69 (0.68, 0.71)

Notes: Parameter estimates that minimize average KL divergence at the aggregate level.

Includes all information environments with a symmetric prior listed in Table D.1, except

for the 11-state complexity; excludes wrong direction reactions. The 95% confidence in-

tervals are obtained from 300 bootstrap samples.

Individual-Level Estimation. We estimate the individual-level parameters in an

analogous way to the aggregate estimates. For a given participant, we find the

parameter values that minimize the average KL divergence of the participant’s re-

ported posteriors from the predicted posteriors across all her trials. The results are

presented in Fig. D.1. Each point in the figure represents the parameter estimates

for one participant.

Figure D.1. Individual level parameter estimates.

Notes: Parameter estimates that minimize the average KL divergence at the individual level. In-
cludes all information environments listed in Table D.1, except for the 11-state complexity; excludes
wrong direction reactions; excludes extreme estimates of θ larger than 5 (approx. 5.5% of sample).
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D.3 Additional Analysis: Overreaction Ratio

D.3.1 Regression Analyses excluding wrong direction reactions

Table D.5. Complexity increases overreaction

Overreaction Ratio
(1) (2)

4 States 0.276∗∗∗ 0.371∗∗∗

(0.0295) (0.0315)

5 States 0.365∗∗∗ 0.455∗∗∗

(0.0359) (0.0383)

d = 0.7 -0.158∗∗∗

(0.0407)

d = 0.8 -0.355∗∗∗

(0.0422)

d = 0.9 -0.462∗∗∗

(0.0437)

Constant -0.116∗∗∗ 0.127∗∗∗

(0.0219) (0.0409)
N 6253 6253
adj. R2 0.037 0.095

Notes: Baseline is 2 states and, in Column 2, diagnosticity
d = 0.6. Includes uniform prior information environments
with 2, 4 or 5 states listed in Table D.1; excludes wrong di-
rection reactions. Standard errors clustered at the individual
level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.6. Overreaction increases in prior concentration

Overreaction Ratio
(1) (2)

Concentrated Prior 0.213∗∗∗ 0.213∗∗∗

(0.0547) (0.0547)

Diffuse Prior -0.215∗∗∗ -0.214∗∗∗

(0.0321) (0.0320)

d = 0.7 -0.311∗∗∗

(0.0321)

d = 0.8 -0.503∗∗∗

(0.0327)

d = 0.9 -0.557∗∗∗

(0.0332)

Constant 0.260∗∗∗ 0.603∗∗∗

(0.0253) (0.0401)
N 4026 4026
adj. R2 0.048 0.127

Notes: Baseline is uniform prior and, in Column 2, diagnostic-
ity d = 0.6. Includes all 3-state information environments listed
in Table D.1; excludes wrong direction reactions. Standard er-
rors clustered at the individual level in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.7. Overreaction decreases in signal diagnosticity

Overreaction Ratio
(1) (2) (3) (4)

2 States 3 States 4 States 5 States
d = 0.7 0.0450 -0.218∗∗∗ -0.370∗∗∗ -0.196∗∗

(0.0483) (0.0502) (0.0655) (0.0863)

d = 0.8 -0.0268 -0.421∗∗∗ -0.597∗∗∗ -0.402∗∗∗

(0.0498) (0.0496) (0.0692) (0.0864)

d = 0.9 -0.0432 -0.461∗∗∗ -0.669∗∗∗ -0.558∗∗∗

(0.0484) (0.0505) (0.0725) (0.0878)

Constant -0.110∗∗ 0.535∗∗∗ 0.703∗∗∗ 0.644∗∗∗

(0.0475) (0.0554) (0.0755) (0.0942)
N 870 1347 2754 2629
adj. R2 0.002 0.070 0.117 0.059

Notes: Baseline is diagnosticity d = 0.6. Includes uniform prior
information environments listed in Table D.1 except for the 11-
state complexity; excludes wrong direction reactions. The results
do not change qualitatively if we further split the analysis by di-
agnosticity of the interior states. Standard errors clustered at
the individual level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table D.8. More overreaction to disconfirmatory realizations

Overreaction Ratio
(1) (2)

Confirmatory -0.302∗∗∗ -0.208∗∗

(0.0255) (0.0807)

Disconfirmatory 0.443∗∗∗ 1.255∗∗∗

(0.0474) (0.113)

d = .7 0.0450
(0.0483)

d = .8 -0.0268
(0.0499)

d = .9 -0.0432
(0.0484)

Confirmatory × d = .7 -0.301∗∗∗

(0.0895)

Confirmatory × d = .8 -0.0817
(0.0844)

Confirmatory × d = .9 0.0262
(0.0837)

Disonfirmatory × d = .7 -0.933∗∗∗

(0.119)

Disonfirmatory × d = .8 -1.233∗∗∗

(0.116)

Disonfirmatory × d = .9 -1.353∗∗∗

(0.119)

Constant -0.116∗∗∗ -0.110∗∗

(0.0219) (0.0476)
Observations 2432 2432
Adjusted R2 0.148 0.304

Notes: Baseline is uniform prior and, in Column 2, diag-
nosticity d = 0.6. Includes all 2-state information envi-
ronments listed in Table D.1; excludes wrong direction re-
actions. Standard errors clustered at the individual level
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D.3.2 Regression Analyses including wrong direction reactions

Table D.9. Complexity increases overreaction

Overreaction Ratio
(1) (2)

4 States 0.348∗∗∗ 0.431∗∗∗

(0.0369) (0.0398)

5 States 0.422∗∗∗ 0.499∗∗∗

(0.0393) (0.0419)

d = .7 -0.107∗

(0.0547)

d = .8 -0.271∗∗∗

(0.0537)

d = .9 -0.401∗∗∗

(0.0537)

Constant -0.331∗∗∗ -0.137∗∗∗

(0.0268) (0.0486)
N 6714 6714
adj. R2 0.026 0.051

Notes: Baseline is 2 states and, in Column 2, diagnosticity
d = 0.6. Includes uniform prior information environments
with 2, 4 or 5 states listed in Table D.1; includes wrong direc-
tion reactions. Standard errors clustered at the individual
level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.10. Overreaction increases in prior concentration

Overreaction Ratio
(1) (2)

Concentrated Prior 0.155∗∗ 0.155∗∗

(0.0606) (0.0607)

Diffuse Prior -0.202∗∗∗ -0.202∗∗∗

(0.0361) (0.0361)

d = .7 -0.213∗∗∗

(0.0402)

d = .8 -0.437∗∗∗

(0.0408)

d = .9 -0.468∗∗∗

(0.0415)

Constant 0.157∗∗∗ 0.437∗∗∗

(0.0297) (0.0467)
N 4220 4220
adj. R2 0.024 0.066

Notes: Baseline is uniform prior and, in Column
2, diagnosticity d = 0.6. Includes all 3-state in-
formation environments listed in Table D.1; in-
cludes wrong direction reactions. Standard errors
clustered at the individual level in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.11. Overreaction decreases in signal diagnosticity

Overreaction Ratio
(1) (2) (3) (4)

2 States 3 States 4 States 5 States
d = .7 0.0936 -0.154∗∗ -0.392∗∗∗ -0.0872

(0.0713) (0.0650) (0.0855) (0.118)

d = .8 0.0525 -0.393∗∗∗ -0.566∗∗∗ -0.279∗∗

(0.0699) (0.0624) (0.0926) (0.108)

d = .9 -0.0272 -0.397∗∗∗ -0.656∗∗∗ -0.453∗∗∗

(0.0722) (0.0624) (0.0933) (0.106)

Constant -0.361∗∗∗ 0.394∗∗∗ 0.550∗∗∗ 0.382∗∗∗

(0.0572) (0.0635) (0.0979) (0.111)
N 986 1404 2928 2800
adj. R2 0.001 0.038 0.048 0.027

Notes: Baseline is diagnosticity d = 0.6. Includes all uniform
prior information environments listed in Table D.1 except for the
11-state complexity; includes wrong direction reactions. Standard
errors clustered at the individual level in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D.12. More overreaction to disconfirmatory realizations

Overreaction Ratio
(1) (2)

Confirmatory -0.870∗∗∗ -1.548∗∗∗

(0.0533) (0.137)

Disconfirmatory 0.542∗∗∗ 1.383∗∗∗

(0.0516) (0.125)

d = .7 0.0936
(0.0713)

d = .8 0.0525
(0.0699)

d = .9 -0.0272
(0.0722)

Confirmatory × d = .7 0.634∗∗∗

(0.162)

Confirmatory × d = .8 0.834∗∗∗

(0.161)

Confirmatory × d = .9 1.135∗∗∗

(0.152)

Disconfirmatory × d = .7 -0.963∗∗∗

(0.134)

Disconfirmatory × d = .8 -1.267∗∗∗

(0.130)

Disconfirmatory × d = .9 -1.358∗∗∗

(0.138)

Constant -0.331∗∗∗ -0.361∗∗∗

(0.0268) (0.0572)
N 2961 2961
adj. R2 0.192 0.273

Notes: Baseline is uniform prior and, in Column 2, diag-
nosticity d = 0.6. Includes all 2-state information environ-
ments listed in Table D.1; includes wrong direction reac-
tions. Standard errors clustered at the individual level in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D.3.3 Additional Figures

Figure D.2. Replication of Fig. 6a excluding wrong direction observations. Each

data point corresponds to the given signal type in a 2-state environment with the given diagnosticity.

D.4 Additional Analysis: State-by-State

(a) CI-Only: Least Rep. State (b) CI-Only: Most Rep. State

(c) Rep-Only: Least Rep. State (d) Rep-Only: Most Rep. State

Figure D.3. Over- and Underweighing by Diagnosticity for One-Stage Models.
Each bar aggregates both signal realizations for all uniform prior 2, 3, 4, and 5-state environments

of diagnosticity d, weighted to match the share of experimental observations in each environment.

Based on structural estimates of θ and λ: (A) and (B) θ = 0, λ = 0.7; (C) and (D) θ = 0.85, λ = 1.

Beliefs are measured as a percentage from 0 to 100.
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(a) Ω = {0.4, 0.5, 0.6}

(b) Ω = {0.3, 0.5, 0.7}

(c) Ω = {0.2, 0.5, 0.8}

(d) Ω = {0.1, 0.5, 0.9}

Figure D.4. Distribution of reported posteriors in 3-state environments with a
uniform prior. Each figure aggregates both signal realizations where, in a slight abuse of nota-

tion, ω3 denotes the most representative state for a given signal realization (i.e., ω3 for a red ball

and ω1 for a blue ball) and ω1 denotes the least. Red line=Bayesian posterior, blue line=cognitive

default/uniform prior, green line=subjective posterior if θ = ∞ and λ = 1 (i.e., 1 for most repre-

sentative state and 0 otherwise).

D.5 Alternative Design: Reporting Expectations

This experiment mirrored the main study design with one modification. On each trial,

after being presented with the information structure, participants recorded their be-

liefs about the expected state E(ω|sj), which in the Baseline paradigm, corresponds

to the probability of drawing a Red ball. To match the structure of the Baseline de-
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sign, participants were instructed that this belief corresponds to the expected state

(bag), which is a function of their beliefs about the state-by-state probabilities (like-

lihood of each bag being used). Participants thus considered the likelihoods of the

potential states that would generate a signal, as in our Baseline design, before record-

ing their expectations separately as a single number. They were also given questions

that allowed them to practice understanding how this expected state was calculated

based on state-by-state beliefs. Note that considering each state first also decreases

the chances that the participant responds to the problem as if the red ball was drawn

without replacement (Rabin 2002). We used their expectations of a Red ball be-

ing drawn out of the chosen bag as the main variable of interest. This corresponds

directly to E(ω|sj) which is used to calculate the overreaction ratio r(sj).

We used their subjective expectations to replicate the 2-state, 3-state, and 5-state

complexity treatments of our main study. These results are presented in Fig. D.5 and

Table D.13 below. As can be seen, all of the main results replicate. We see signifi-

cant underreaction in the 2-state condition but significant overreaction as complexity

increases. We also see the predicted relationship with signal diagnosticity, with more

overreaction for noisier signals.

Figure D.5. Overreaction Ratio by Complexity and Diagnosticity. Each data point

aggregates all uniform prior environments of a given complexity by diagnosticity and signal realiza-

tion.
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Table D.13. Overreaction increases in complexity

Overreaction Ratio
(1) (2)

3 States 0.365∗∗∗ 0.368∗∗∗

(0.0458) (0.0459)

5 States 0.466∗∗∗ 0.547∗∗∗

(0.0518) (0.0556)
d = 0.7 -0.124∗∗∗

(0.0375)
d = 0.8 -0.349∗∗∗

(0.0430)
d = 0.9 -0.449∗∗∗

(0.0479)
Constant -0.0788∗∗∗ 0.150∗∗∗

(0.0232) (0.0412)
N 4063 4063
adj. R2 0.072 0.117

Notes: Baseline is 2 states and, in Col-
umn 2, diagnosticity d = 0.6. Includes
uniform prior information environments
with 2, 4 and 5 states listed in Ta-
ble D.1; excludes wrong direction reac-
tions. Standard errors clustered at the
individual level in parentheses. ∗ p <
0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

D.6 Analyses of Mechanism

Measuring Attention. To pin down the attention mechanism, we first develop

a method of measuring attention based on the Mouselab paradigm of Payne et al.

(1993). We modified the 5 state conditions in our Baseline design by asking partici-

pants to click on a state before entering their beliefs. As outlined in Section 4.1, the

paradigm itself restricts the stock of attention, while first-click is a validated mea-

sure of channelled attention. Importantly, this Limited Attention treatment does not

change the informational environment relative to the standard Baseline condition.

The first column of Table D.14 shows that restricting attention increased overre-

action significantly. The second column of the same table breaks down the Limited

Attention treatment into trials in which the first click was on the representative state

or not. This is meant to divide participants into those who employ representativeness

as a salience cue or not. Those who appear to use representativeness as a salience cue

display significantly more overreaction than those who do not. Finally, Table D.15

presents the structural estimates from the Limited Attention treatment in compari-

son to the Baseline condition with the same information structure. Consistent with

our prediction, restricting attention exacerbates the distortion in the mental repre-
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sentation, captured by the higher θ in the Limited Attention treatment, while not

affecting processing capacity, captured by the unchanged λ.

Table D.14. Limited attention increases overreaction

Overreaction Ratio
(1) (2)

Limited Attention treatment 0.179∗∗

(0.0551)

Click rep. state first 0.381∗∗∗

(0.0526)

Constant 0.249∗∗∗ 0.154∗∗∗

(0.0284) (0.0464)
Observations 4379 1740
Adjusted R2 0.012 0.038

Notes: Baseline is the Baseline Attention treatment in Column 1 and first-
click on a non-representative state in Column 2. Column 1 includes the Base-
line Attention and Limited Attention treatments for all 5-state information
environments listed in Table D.1; Column 2 includes the Limited Attention
treatment for all 5-state information environments listed in Table D.1; ex-
cludes wrong direction reactions. Standard errors clustered at the individual
level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table D.15. Limited attention increases representativeness θ

θ 95% CI λ 95% CI
Limited Attention 1.26 (1.16, 1.38) 0.74 (0.72, 0.76)

Baseline Attention 0.99 (0.92, 1.08) 0.73 (0.72, 0.74)

Notes: This table compares the parameter estimates that minimize the average KL
divergence at the aggregate level for the Limited Attention and Baseline Attention
treatments. Includes all 5-state information environments listed in Table D.1 for the
relevant treatment; excludes wrong direction reactions. The 95% confidence intervals
are obtained from 300 bootstrap samples.

Causal Effect of Attention. Each paradigm in this section is a variation of the

Limited Attention paradigm and we therefore use the Limited Attention paradigm

as the baseline.

We first developed a paradigm to mirror situations in which there is uncertainty

over which state is representative or the representativeness cue is absent all-together.

We suppressed the representativeness cue by hiding the number of red and blue

balls associated with each state until participants clicked a ”reveal” button for that

state. Otherwise, the design was identical to the original Limited Attention condition.

Because information on the representativeness of each state was initially not available,

attention was predicted to be channeled as-if randomly in this Representativeness
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(a) State 1 Representative (b) State 5 Representative

Figure D.6. When representativeness is suppressed and there are no salience cues,
participants’ first clicks are as-if random. Each bar aggregates both signal realizations for

all 5-state environments in the Rep. Suppressed treatment.

Suppressed. Our framework predicts that this will generate underreaction in the

same information environment as the Limited Attention condition, where marked

overreaction was observed.

Fig. D.6 shows that, in contrast to the Limited Attention condition, participants’

clicking behavior was not associated with the state’s representativeness. This suggests

that attention was channeled as-if randomly in the Representativeness Suppressed

condition. As shown in Fig. D.8b, consistent with our framework, we find that this

leads to underreaction across all signal diagnosticities. These results highlight that

the emergence of over versus underreaction depends critically on the presence of

representativeness as a salience cue.

We then sought to explore the impact of low-level (visual) and top-down (goal-

directed) salience in channeling attention and driving belief-updating in our setting.

We did this by first increasing the salience of the most representative state in the

Representativeness Suppressed condition. The most representative state was visually

highlighted in yellow against a neutral background, similar to the method of Li and

Camerer (2022); we also instructed participants that they would be paid based on

their reported beliefs for that state to manipulate top-down salience. Even though

representativeness was suppressed as a salience cue, we predicted that the visual and

top-down salience cues would channel participants’ attention to the representative

state. Fig. D.7 shows that this was indeed the case. Moreover, Fig. D.8b shows

that the introduction of these salience cues to the representative state brought back

overreaction, which provides additional evidence the critical role of attention in belief-

updating.
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(a) State 1 Salient (b) State 5 Salient

Figure D.7. When representativeness is suppressed and there are visual/goal-direct
salience cues, most participants click on state associated with alternative salience
cue first. Each bar aggregates both signal realizations for all 5-state environments in the Rep.

Suppressed Goal-Directed & Visual Salience treatment.

(a) Overweighing of most salient state (b) Overreaction

Figure D.8. When representativeness is suppressed, visual/goal-direct salience cues
lead to overweighing of the salient state and overreaction. In the Rep. Suppressed Goal-

Directed & Visual Salience treatment, representativeness is suppressed and the alternative cue is

on the most representative state. In Panel (A), each bar aggregates both signal realizations for

all 5-state environments in the Rep. Suppressed Goal-Directed & Visual Salience treatment; the

Other States bar averages across all states aside from the most salient; beliefs are measured as a

percentage from 0 to 100. In Panel (B), each data point aggregates all 5-state environments in the

given treatment by diagnosticity and signal realization.
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(a) Overweighing of most rep. state (b) Overreaction

Figure D.9. When present, representativeness dominates other salience cues in
driving overweighing of salient state and overreaction. In the Visual Salience and Goal-

Directed & Visual Salience treatments, representativeness is not suppressed and the alternative cue

is on the least representative state. In Panel (A), each bar aggregates both signal realizations for all

5-state environments in the given treatment; the Middle State bar averages across all middle states;

beliefs are measured as a percentage from 0 to 100. In Panel (B), each data point aggregates all

5-state environments in the given treatment by diagnosticity and signal realization.

To examine the impact of the representativeness salience cue relative to visual and

top-down salience, we then added just visual salience (Visual Salience condition) and

visual salience plus goal directed salience (Goal-Directed and Visual Salience) cues

to the least representative state in the Limited Attention condition. Note that by

placing these alternative salience cues on the least representative state, if visual and

goal-directed salience dominates representativeness, then we should see underreaction

in these conditions. Instead, as shown in Figure D.9b, we still observe overreaction

in both the Visual Salience and Goal-Directed & Visual Salience conditions. The

extent of overreaction is similar to the Limited Attention condition. A state-by-state

analysis, depicted in Figure D.9a, shows a similar picture: when representativeness is

present as a salience cue, it dominates both the visual and goal-directed salience cues

in overweighing the beliefs about the associated state.78 Together, these results sug-

gest that the representativeness-based salience cue, when present, plays a significant

role in channeling attention in belief-updating.

78Note that in the Visual Salience and Goal-Directed and Visual Salience conditions, the non-
representative-based salience cues were associated with the least representative state: State 5 in
Panel A and State 1 in Panel B.
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D.7 Evaluating Model Performance

D.7.1 Model Completeness

We define model completeness as follows. Similar to the structural estimation in

Section 3.2, we measure the prediction loss of a model by the KL divergence of the

reported posterior from the predicted posterior. Let eB denote the expected predic-

tion loss relative to the Bayesian prediction. Let eM denote the minimum expected

loss relative to the prediction of model M ∈ {T, P,R}, where M = T corresponds

to our two-stage model, M = P corresponds to the processing-only model (θ = 0),

M = R corresponds to the representational-only model (λ = 1), and the minimum

is taken with respect to all feasible values of the model parameter(s). Finally, let

e∗ denote the minimum expected loss relative to the best possible prediction. The

completeness of model M is given by

κM ≡ eB − eM

eB − e∗
∈ [0, 1]. (25)

That is, a model M is 0% complete if it predicts no better than Bayesian updating

and 100% complete if predicts as accurately as the best prediction.

Estimating completeness requires an estimate of e∗. As Fudenberg et al. (2022),

we use ten-fold cross-validation to compute such an estimate. Estimates of eB and

eM are straightforward to derive from the model and data. For this analysis, we do

not exclude trials in which participants react in the wrong direction so as to capture

the full extent of model fit to the data.

D.7.2 Model Restrictiveness

Following Fudenberg et al. (2023), we randomly generate 1000 mappings, where each

mapping assigns a posterior distribution over the state space to each information

environment from our experimental set (see Table D.1) and each signal realization

sj ∈ {b, r}. We draw mappings uniformly from an ‘admissible’ set of mappings that

satisfy basic directional and monotonicity properties.79 These properties hold for

Bayes’ rule and other common models of belief-updating. We impose such properties

to ensure that our synthetic data is ‘reasonable’ belief data—without such restrictions

on the admissible set, any model that satisfies such basic properties could have high

restrictiveness on a synthetic dataset, even if it is in fact quite flexible. Evaluating

the restrictiveness of a model with respect to this ‘admissible’ synthetic data provides

a sense of the additional restrictions on belief-updating imposed by the model.

Let dB denote the expected distance of the synthetic mapping from the Bayesian

79For example, we require mappings to satisfy the property that the posterior probability of a
state weakly increases in the signal diagnosticity of that state. At a more basic level, we require
each posterior distribution in the mapping to in fact be a probability distribution, i.e., it assigns a
number between 0 and 1 to each state and sums to one across states.
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prediction, where distance is measured by the KL divergence and the expectation is

taken with respect to the uniform distribution over the admissible set. Analogously,

let dM denote the minimal expected distance of the synthetic mapping from the

prediction of model M , where the minimum is taken with respect to the parameter(s)

of model M . The restrictiveness of model M is defined by the ratio of these two

expected distances,

ρM ≡ dM

dB
∈ [0, 1]. (26)

That is, a model is 0% restrictive if it fits synthetic data perfectly—the KL divergence

of the synthetic mapping from the best fit of the model is zero—and 100% restrictive

if it fits synthetic data no better than Bayes’ rule—the KL divergence of the synthetic

mapping from the best fit of the model is equal to the KL divergence of the synthetic

mapping from Bayes’ rule.

D.8 Alternative Settings

D.8.1 Alternative Signal Structure

Table D.16. Information environments used in 3-signal experiment

Complexity |Ω| Prior p0 Information Structure

3 states

p0(ω1)

p0(ω2)

p0(ω3)

 =

0.330.33

0.34


.40 .35 .25

.25 .40 .35

.35 .25 .40

,
.40 .25 .35

.35 .40 .25

.25 .35 .40


.45 .35 .20

.20 .45 .35

.35 .20 .45

,
.45 .20 .35

.35 .45 .20

.20 .35 .45



Notes: For the information structure, each row denotes a bag (Bag 1, Bag 2, and Bag 3, respec-

tively) and each column denotes a signal realization (red, blue, and green, respectively).

Table D.17 below presents regression results on over- versus underweighing of

specific states based on whether they are most representative. Note that it includes

all reactions, as in this information environment, the definition of wrong direction

reaction is not clear-cut: it depends on how the numeric values of the states are

chosen.

Setting the numeric value of the state to be the share of red balls for the analysis

of overreaction, the middle state (ω2 = .35) is Bag 3 for the first and third information

structures in Table D.16 and Bag 2 for the second and fourth information structures,
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Table D.17. Representative state is overweighed in a non-good news setting

Subjective - Objective Posterior
(1)

Most Representative State 3.523∗∗∗

(0.763)

Constant (Other States) -0.731∗∗∗

(0.164)
N 969
adj. R2 0.033

Notes: Baseline is the two non-representative states. Includes all informa-
tion environments listed in D.16 and all reactions. Standard errors clustered
at the individual level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

while the low state (ω1 = .2 or ω1 = .25) is Bag 2 for the first and third information

structures and Bag 3 for the second and fourth information structures. The high

state (ω3 = .4 or ω3 = .45) is always Bag 1. The middle state is representative when

a green ball is drawn in the first and third information structures and a blue ball is

drawn in the second and fourth information structures, and similarly the low state is

representative when a blue ball is drawn in the first and third information structures

and a green ball is drawn in the second and fourth information structures. The high

state is always representative when a red ball is drawn.

D.8.2 Forecasting Price Growth

In this section, we describe the design of the Forecasting Price Growth experiment

reported in Section 6.2. The design largely follows Fan et al. (2023). Participants

were first shown the stock price growth distribution for good and bad firms as in

Fig. D.10. Note that there are 11 potential stock price growths (signal realizations).

Participants were told that the average stock price growth of a Good (Bad) firm

was +100 (-100). Across all treatments, participants were told that a firm would

be selected at random, with Good and Bad firms equally likely to be selected, they

would observe the selected firm’s stock price growth for the current month and, in

line with the graph, that a Good firm was more likely to generate a higher price

growth signal than a Bad firm. They were then shown the selected firm’s stock price

growth.

As in Fan et al. (2023), each participant made forecasts by reporting their be-

liefs about the likelihood of future price growth realizations (for the next month)

after observing the price growth in the current month. They did so in one of two

conditions that differed in representational complexity: Complex or Simple. In the

Complex condition, participants forecasted the likelihood that the selected firm would

experience each of the possible eleven stock price growths next month. The Simple
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condition sought to change representational complexity without affecting the un-

derlying information environment. It was the same as the Complex condition but

partitioned the price growth space into the negative domain (less than 0) versus the

positive domain (more than 0). After observing whether the current month’s price

growth was positive or negative, participants forecasted whether next month’s price

growth would be positive or negative.

Despite the same underlying information environment, the change in represen-

tational complexity significantly affected belief-updating. Comparing the share of

participants who overreacted versus underreacted—the same measure as in Fan et al.

(2023)—the Complex condition replicates their results that more participants over-

reacted when forming a forecast (r = 0.24, p < .01). However, participants underre-

acted in the Simple condition (r = −0.26, p < .01).80

Figure D.10. Information structure in the inference-forecast problem

D.8.3 Forecasting Financial Instruments

This section provides additional details of the financial options extension described

in Section 6.3. Similar to the forecasting price growth experiment reported in Sec-

tion 6.2, participants were told that there was a pool of Good and Bad firms with

respective stock price growth distributions shown in Fig. D.11. One firm would be

selected at random, and each type of firm was equally likely to be selected.

The experiment was designed to mirror a setting where people form beliefs about

the future performance of a financial option whose payoff space is either simple—the

binary option—or more complex—the bull spread—while keeping the structure of

80Note that Fan et al. (2023) elicited forecasts as an expectation while we elicited forecasts as
the likelihood of each potential price growth. As shown in Appendix D.5, this difference should not
affect our results. We chose the latter approach as it provides richer data to explore our model’s
predictions.
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the underlying asset fixed (i.e., the firm). Participants were endowed with a financial

option based on the randomly selected firm. The firm’s monthly price increase was

drawn from the distribution in Fig. D.11. In the Bull Spread condition, participants

were told that they would receive the following payoff based on the price increase

of the selected firm: $0 if the price increase was $0, $2 if the price increase was

$2, etc. In the Binary Option condition, they were told that they would receive a

payoff of $0 if the price increase was less than $3 (i.e., $0 or $2) and $6 if the price

increase was greater than $3 (i.e., $4 or $6). Note that the average payoff, given the

signal structure, and the underlying information environment was the same across

both conditions. Each participant was shown the price increase of the selected firm

in the current month and asked to forecast the likelihood of the potential payoffs of

their asset based on the price increase in the next month; this amounted to making

forecasts over 2 objects in the Binary Option condition and 4 objects in the Bull

Spread condition.

Figure D.11. Information structure in the financial asset problem
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(a) Overreaction ratio (b) Diff. in Share Over vs. Under

Figure D.12. Participants underreact to a simple binary option and overreact to
a complex bull spread across all signal realizations. Each data point or bar corresponds to

a single signal realization in the relevant financial options condition.
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E Experimental Instructions

The following shows the experimental instructions for the 3-state treatment. The

other complexity treatments are analogous.

Page 1:
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