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Abstract

This paper studies which misspecified models are likely to persist when decision-
makers compare them with competing models. The main result provides a char-
acterization of such models based on two features that are straightforward to
derive from the primitives: the model’s asymptotic accuracy in predicting the
equilibrium pattern of observed outcomes and the ‘tightness’ of the prior around
such equilibria. Misspecified models can be robust, persisting against a wide
range of competing models—including the correct model—despite individuals
observing an infinite amount of data. Moreover, simple misspecified models
equipped with entrenched priors can be more robust than complex correctly
specified models.
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1 Introduction

People use models to guide decision making, but the subjective nature of models sug-

gests that model misspecification can be pervasive. Misspecification arises when the

set of data-generating processes considered by the decision-maker fails to include the

true data-generating process. It can stem from the need to simplify the complex world

as well as from behavioral biases such as overconfidence or correlation neglect. To

explore how the use of misspecified models impacts beliefs and actions, the growing

literature on misspecified learning focuses on the case of a dogmatic agent who uses

a particular misspecified model and never considers changing this model.1 While this

simplifies the environment in a way that yields tractable characterizations of long-run

beliefs, it leaves open the question of whether it is realistic to expect a decision-maker

to never abandon a wrong model.

A plethora of evidence suggests that people often switch models when an alternative

seems more compelling. For example, scientists adopt a new paradigm if it fits the

observable data significantly better in terms of accuracy and simplicity (i.e., Kuhn’s

(1962) theory of paradigm shifts). One classic example is the paradigm shift from

the Ptolemaic model to the Copernican model in astronomy. Likewise, economists

adopt new models when evidence comes to light that important economic forces are

missing from old models. People also alter their subjective assumptions about the

world in daily life, such as changing thinking patterns in cognitive behavioral therapy

or overcoming implicit biases through introspection (Di Stefano, Gino, Pisano, and

Staats, 2015). People are influenced by, and attracted to, different political narratives

as they receive more information (Fisher, 1985; Braungart and Braungart, 1986).

If individuals consider switching to competing models, which (if any) misspecified

models should we expect to persist and when? Answering these questions is essential

for understanding the enduring implications of model misspecification in the long term

and for devising policies to tackle it. This paper proposes a novel learning framework

1Examples include: a monopolist trying to estimate the slope of the demand function when the
true slope lies outside of the support of his prior (Nyarko, 1991; Fudenberg, Romanyuk, and Strack,
2017); agents learning from private signals and other individuals’ actions while neglecting the corre-
lation between the observed actions (Eyster and Rabin, 2010; Ortoleva and Snowberg, 2015; Bohren,
2016) or overestimating how similar others’ preferences are to their own (Gagnon-Bartsch, 2017); over-
confident agents falsely attributing low outcomes to an adverse environment (Heidhues, Kőszegi, and
Strack, 2018, 2019; Ba and Gindin, 2022); a decision-maker imposing false causal interpretations on
observed correlations (Spiegler, 2016, 2019, 2020); a gambler who flips a fair coin mistakenly believing
that future tosses must exhibit systematic reversal (Rabin and Vayanos, 2010; He, 2022); individuals
narrowly focusing their attention on only a few aspects rather than a complete state space (Mailath
and Samuelson, 2020).
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to address these questions. In this framework, an agent uses a subjective model to

learn an unknown fixed data-generating process (henceforth DGP) that governs the

relationship between her action choices and outcomes. Each model is a parametric

theory of how actions may affect the outcome distribution. Formally, it consists of a

collection of possible DGPs, each indexed by a distinct parameter value. For example,

consider a monopolist who chooses production quantities based on a linear model of

consumer demand. Here, for each pair of parameter values—the slope and intercept

of the demand curve—the model prescribes a mapping from production quantities to

distributions of consumer demand. Such a model is misspecified if the true DGP is not

included in the predicted mappings. While a dogmatic modeler typically considered in

the misspecified learning literature uses the same model throughout, in my framework

the agent is a switcher who subscribes to one model in any period but can switch

between multiple models. For the main analysis, this agent starts with an initial model

and entertains one competing model. She has a prior over the parameters within each

model, updates beliefs as she observes realized outcomes, and plays the optimal action

based on the current model given the updated posterior. To decide whether to switch

to the competing model, the agent keeps track of the Bayes factor—the likelihood

ratio of the competing model relative to the initial model given the observed data—

and switches if it exceeds a fixed switching threshold. She switches back to the initial

model if the Bayes factor drops below the inverse of the threshold. As the switching

threshold increases, model switching requires more evidence and becomes stickier.

One might question why, given the agent is already considering and comparing mul-

tiple models, she does not perform Bayesian updating over the models and aggregate

their predictions. That is, instead of switching between models, the agent could poten-

tially form a “hypermodel” that encompasses all DGPs from these models and then act

like a standard Bayesian agent. First, it is important to note that the model-switching

framework allows for the nesting of models. In fact, the initial model and the compet-

ing model may each consist of a group of smaller models. However, as pointed out in

Savage’s (1972) Foundations of Statistics, Bayesianism is a reasonable description of

human behavior only when decision-makers focus on “modest little worlds.”2 It is unre-

alistic to expect them to formulate and act upon “a model of everything” because of the

cognitive demand it imposes. Furthermore, models may be built upon fundamentally

2Savage (1972, p. 16) describes it as “utterly ridiculous” to demand that “one envisage every
conceivable policy for the government of his whole life (at least from now on) in its most minute
details, in the light of the vast number of unknown states of the world, and decide here and now on
one policy.”
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conflicting ideas, such as a geocentric model versus a heliocentric model, or a liberal

worldview versus a conservative worldview, which makes it hard for an individual to

employ them in decision making simultaneously. Given these considerations, it seems

plausible that people start with an initial model, which encompasses all sub-models

they are comfortable employing simultaneously, and expand this model or switch to a

different one when necessary.

Within this framework, a model persists against a given competing model if, with

positive probability, the agent eventually stops switching and sticks to this model for-

ever. Intuitively, a model is robust if it persists against a wide range of competing

models. To delineate the upper and lower bounds of robust models, I introduce two

notions of robustness. Models are globally robust if, fixing a prior over model parame-

ters, they persist against every possible competing model, regardless of its predictions

and the associated prior over its parameters. It is not immediately clear whether this

robustness notion permits any form of model misspecification; but if a misspecified

model turns out to be globally robust, this provides a compelling argument for why

we should expect it to sustain over time. Global robustness is a strong requirement

since it places no restrictions on the competing model. In many cases, however, not

every model is equally likely to arise in competition. When the agent is only willing

to implement small changes or has limited knowledge about the environment, she may

only entertain competing models that are close to her current model rather than those

representing completely different paradigms. This idea gives rise to another natural

notion—local robustness—which requires a model to persist against every local pertur-

bation with similar predictions and similar priors. These notions provide a language to

compare the robustness properties of models across different environments, and their

formalization is a central conceptual contribution of my framework.

The main results of the paper provide a complete characterization of both robustness

notions based on two properties that are easily derived from the primitives of a model,

namely asymptotic accuracy and prior tightness, as summarized in Table 1. A model

has perfect asymptotic accuracy if it gives rise to a self-confirming equilibrium (Batti-

galli, 1987; Fudenberg and Levine, 1993) that satisfies a stability condition that I refer

to as p-absorbingness. In a self-confirming equilibrium, the agent plays actions against

a consistent belief over model parameters such that the model prediction perfectly co-

incides with the objective outcome distribution. The stability condition requires that,

with positive probability, a dogmatic modeler who only uses this model eventually only

plays actions in the support of the equilibrium. With perfect asymptotic accuracy, the

model has weakly higher explanatory power than any other competing model in the
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Notions of robustness

Properties global local

asymptotic accuracy perfect perfect

prior tightness yes no

Table 1: Summary of results.

limit with positive probability. However, this alone does not imply persistence, because

the learning dynamics may induce the agent to switch away before her belief moves

sufficiently close to the equilibrium belief. If, in addition, the prior is tight in the

sense of being concentrated around the set of p-absorbing self-confirming equilibria,

the explanatory power of the model remains consistently high across all periods.

I first characterize which models can be locally or globally robust under at least

one (full-support) prior. Theorem 1 establishes that a model is globally robust for

at least one prior if and only if it is locally robust for at least one prior, and both

amount to a requirement for perfect asymptotic accuracy. This result holds for all

levels of switching stickiness as long as the switching threshold is strictly larger than

1. Perhaps surprisingly, while we may conjecture local robustness to be much weaker

than global robustness, these two notions characterize the exact same set of models.

To see why local robustness necessitates perfect asymptotic accuracy, notice that any

model that is not asymptotically accurate can be improved locally by perturbing all its

predictions towards the true DGP. Even if the agent is extremely reluctant to switch,

the accumulation of evidence over time eventually leads to the abandonment of a less

accurate model.

Moving forward, I explore when, or under which priors, models exhibiting perfect

asymptotic accuracy are locally or globally robust. Theorem 2 highlights the real

distinction between global and local robustness: the former requires prior tightness but

the latter does not. Furthermore, I provide a closed-form quantification of the required

level of tightness in terms of the switching threshold: the prior probability assigned to

the parameters involved in the p-absorbing self-confirming equilibria must exceed the

inverse of the switching threshold. As the threshold decreases to 1, the agent must

start with a prior fully concentrated on the p-absorbing self-confirming equilibria to

ensure that the model is globally robust. Interestingly, when switching is sticky, higher

stickiness facilitates the persistence of model misspecification not by broadening the

set of robust misspecified models, but by enabling asymptotically accurate misspecified

4



models to persist under a more extensive range of priors.

My characterization provides a formal learning foundation for the persistence of

asymptotically accurate misspecified models.3 Such misspecified models can be glob-

ally robust and persist against any arbitrary competing model—including the true

model—despite the agent having an infinite amount of data. Moreover, the results

provide off-the-shelf tools to predict which underlying biases are more relevant in spe-

cific contexts, and these predictions are relevant for proposing behavioral policies to

mitigate the consequences of misspecification. As an illustration, in Section 5.1 I apply

my results to a workhorse model in the misspecified learning literature where the agent

has a wrong perception of a payoff-relevant fundamental and learns about another

fundamental (Heidhues et al., 2018; Ba and Gindin, 2022; Murooka and Yamamoto,

2023). I show that the asymptotic accuracy of misspecified models is closely linked to

whether they induce positively or negatively reinforcing belief dynamics, the direction

of which can be determined by examining how beliefs about different fundamentals

affect the optimal action choice. In a leading example, I show that overconfidence in

one’s ability gives rise to positively reinforcing belief dynamics and convergence to a

self-confirming equilibrium, while underconfidence gives rise to negatively reinforcing

dynamics and oscillation between non-self-confirming effort choices for a wide range of

parameters. This suggests that overconfidence is globally robust but underconfidence

may not even be locally robust. Thus, underconfidence requires less intervention than

overconfidence as it can be self-correcting.

The characterization also provides fresh insights into how qualitative features of

the model and the learning environment contribute to persistence. First, an interest-

ing contrast emerges between the robustness properties of misspecified and correctly

specified models. On one hand, all correctly specified models have perfect asymptotic

accuracy while a subset of misspecified models can achieve this. On the other hand,

correct specification does not imply prior tightness, but the latter property can be eas-

ily achieved by a misspecified model with a small parameter space or one that yields

a large number of self-confirming equilibria. In combination, these observations con-

vey an intriguing negative message: some misspecified models can prove more robust

than correctly specified models, precisely because they are sufficiently extreme and

misleading. Second, lower switching stickiness can be a double-edged sword, since it

makes global robustness harder to attain for any model, whether correctly or incor-

3Note that, however, perfect asymptotic accuracy does not equate to high efficiency because
strictly suboptimal actions can be played in a self-confirming equilibrium if the model yields wrong
predictions off-path.
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rectly specified. As the agent adopts a lower switching threshold, it becomes easier to

switch away from a misspecified model; however, it also becomes likely to abandon a

correctly specified model due to small pieces of noisy information and get trapped with

a misspecified alternative. In Section 5.2, I apply these insights to a media consumption

problem, demonstrating that a simplistic binary model of the world can outperform a

correct yet more flexible model in terms of robustness properties and even replace the

correct model as the prevailing worldview when the switching threshold is sufficiently

low. Such model misspecification can result in enduring polarization of political beliefs.

Related Literature. This paper contributes to the growing literature on learning

with misspecified models. Much of the literature focuses on case-by-case analyses of

misspecified models when the decision-maker holds on to a particular model. This

paper provides a microfoundation for the persistence of certain types of misspecified

models. Another strand of this literature studies equilibrium concepts to characterize

the decision-maker’s steady state behavior, among which self-confirming equilibrium

is the most relevant for this paper (Battigalli, 1987; Fudenberg and Levine, 1993).4

This paper provides a formal for the idea that a decision-maker can be trapped in a

self-confirming equilibrium and fail to realize his misperception.5 Crucially, my formal

treatment of the model-switching dynamics yields new insights into the impact of

environmental factors, such as the switching stickiness and the range of competing

models, on model persistence—insights that go beyond what a simple equilibrium

analysis can reveal.

Recent developments in the literature focus on characterizing asymptotic beliefs

and actions in general environments (Bohren and Hauser, 2021; Frick, Iijima, and

Ishii, 2023). This paper faces many of the same technical challenges as these works

since model persistence partly hinges on the asymptotic behavior of a dogmatic mod-

eler. Esponda, Pouzo, and Yamamoto (2021) find conditions for a single agent’s action

frequency to converge to a Berk-Nash equilibrium using tools from stochastic approxi-

mation. Fudenberg, Lanzani, and Strack (2021) establish that a uniformly strict Berk-

Nash equilibrium is uniformly stable in the sense that starting from any prior that is

4Esponda and Pouzo (2016) propose the concept of Berk-Nash equilibrium, generalizing self-
confirming equilibrium by relaxing the requirement that the subjective prediction fully coincides with
the objective reality. Other related concepts include analogy-based expectation equilibrium in Jehiel
and Koessler (2008) and cursed equilibrium in Eyster and Rabin (2005). As pointed out by Esponda
and Pouzo (2016), these two solution concepts coincide with Berk-Nash or self-confirming equilibrium
under appropriately specified feedback structures.

5See for example Sargent (1999).
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sufficiently close to the equilibrium belief, the dogmatic modeler’s action converges to

the equilibrium with arbitrarily high probability. In this paper, I show that robust-

ness is related to p-absorbingness—a different stability notion that does not require

the dogmatic modeler’s action to converge, but her action to enter and eventually stay

within the support of an equilibrium. The main technical contribution of this paper

is to integrate model switching into active learning. Given that the agent considers

multiple models, we need to keep track of multiple belief processes, all of which are

generated by endogenous data. Since the Bayes factor that governs the model switching

process interacts and correlates with all belief processes even when there is no switch,

the characterization of the agent’s behavior requires new techniques.

This paper is part of a body of research that explores why misspecified models

persist. Gagnon-Bartsch, Rabin, and Schwartzstein (2020) study the stability of models

when the agent entertains a correctly specified alternative model. In their setting, data

is exogenous but the agent only pays attention to the data they deem decision-relevant

given the current model. This contrasts with my framework where data is endogenously

generated but the agent pays attention to all available data. Cho and Kasa (2015)

study model switching with endogenous data in a continuous setting. They restrict

attention to models that induce a unique globally stable self-confirming equilibrium

and characterize dominant models based on the asymptotic rate of parameter drift

leading to an escape from the equilibrium. In contrast, my results provide insights into

the role of initial conditions in determining model persistence.6 Montiel Olea, Ortoleva,

Pai, and Prat (2022) characterize the “winner” model in a contest where agents use

models to predict an exogenous data-generating process and make auction bids based

on their subjective model prediction error. They identify a trade-off between model fit

and model estimation uncertainty when the dataset is small. My paper complements

their finding by showing that a similar trade-off between asymptotic accuracy and prior

tightness exists in a model-switching framework even with infinite data.

A set of papers approach this problem from a payoff perspective. Fudenberg and

Lanzani (2022) study the evolutionary dynamics when a small share of a large pop-

ulation mutates to enlarge their models at a Berk-Nash equilibrium. They find that

an equilibrium can resist mutations that yield a better statistical fit but induce worse-

performing actions. Similar to this paper, they show that a self-confirming equilibrium

6The difference in results mainly stems from the different switching rules we consider. Cho and
Kasa (2015) employ a Lagrange Multiplier (LM) test in model selection, which is calculated only
based on the maximum likelihood estimation of the initial model, while the Bayes factor is sensitive
to the prior beliefs and the choice of the competing model.
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resists every mutation.7 He and Libgober (2020) also consider individuals who eval-

uate competing models based on their expected objective payoffs but examine multi-

agent strategic games where misspecification can lead to beneficial misinferences. Frick,

Iijima, and Ishii (2021) study welfare comparisons of learning biases and find that some

biases can outperform Bayesian updating because they may lead to correct learning at

a faster speed. Apart from comparing objective payoffs, works in this area also study

individuals who choose to adopt models that promise the highest subjective future

payoffs (Eliaz and Spiegler, 2020; Levy, Razin, and Young, 2022).

An extensive literature in decision theory studies the behavior of a decision-maker

who has access to multiple models or priors over states. A number of canonical decision

criteria capture aversion to model uncertainty, which is absent from my framework

since the agent maximizes expected utility based on her current model (Gilboa and

Schmeidler, 1989; Klibanoff, Marinacci, and Mukerji, 2005; Hansen and Sargent, 2001).

Ortoleva (2012) proposes and axiomatically characterizes an amendment to Bayes’ rule,

called the Hypothesis Testing model, where the agent switches to a better alternative

prior (if it exists) upon observing an event to which she assigned a probability below

some threshold. This contrasts with my framework where the agent switches if the

ratio of the probability of the observed outcomes under the current model relative to

the competing model is sufficiently low. Karni and Vierø (2013) provide a choice-

based decision theory to model a self-correcting agent who can expand his universe of

subjective states.

This paper is also connected to a literature that considers the notion that indi-

viduals can shift models based on statistical fit and explores its ramifications across

various contexts. As individuals tend to adopt better-fitting models based on observed

information, this creates opportunities for a self-interested sender to manipulate the

signal structure or introduce alternative models (Galperti, 2019; Schwartzstein and

Sunderam, 2021; Aina, 2023). My results suggest that people could be misled into

believing in a misspecified model and act suboptimally even when they have infinite

data. Finally, this paper is also related to the statistics literature on model selection.8

7The underlying mechanisms of our results are different. Their result follows from the assumption
that every mutation is an expansion of the original model. Since a self-confirming equilibrium must
remain an equilibrium under the mutated model, it is possible for all individuals in the population to
stick to the same behavior as before the mutation.

8Statisticians have developed a number of criteria that differ in their cost of computation and
penalty for overfitting, such as the Bayes factor, Akaike information criterion (AIC), Bayesian in-
formation criterion (BIC), and likelihood-ratio test (LR test), and the machine learning community
favors cross-validation due to its flexibility and ease of use (Chernoff, 1954; Akaike, 1974; Stone, 1977;
Schwarz et al., 1978; Kass and Raftery, 1995; Konishi and Kitagawa, 2008).
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My paper focuses on the Bayes factor rule and differs with the statistical literature by

studying an endogenous data-generating process.

The rest of the paper is organized as follows. Section 2 provides an illustrative

example. Section 3 introduces the learning framework. Section 4 presents the main

results and Section 5 develops two applications. Section 6 discusses extensions and

Section 7 concludes. Appendix A contains useful auxiliary results, Appendix B includes

proofs of the main results, and Appendix C contains omitted examples.

2 Illustrative Example

As a simple illustration of the learning framework and the main results, consider the

following example. An artist chooses how much effort to exert in creating artwork

in every period, at ∈ {0, 1, 2}, for t = 0, 1, 2, .... Upon exerting effort, he incurs a

cost at(at + 0.5) and obtains revenue from the sales of his work. The sales revenue is

given by yt = (at + b)ω + ϵt, where b ∈ R captures how talented the artist is, ω ∈ R
captures an unknown market demand for arts, and ϵt is a random noise term with

known distribution. Suppose the artist’s true talent is b∗ = 1 and the true market

demand is ω∗ = 2.

The artist holds a non-degenerate prior belief about the market demand and hopes to

learn about it by repeatedly exerting effort and observing the realized sales. If the artist

knows his true talent, he will be able to correctly infer the market demand from the sales

data, allowing him to eventually choose the optimal effort a∗ = 1. Suppose, however,

the artist is potentially biased in his self-perception and assigns probability 1 to b̂ ∈
{0, 1, 2}. Since his true talent is b∗ = 1, having b̂ = 2 corresponds to overconfidence

and b̂ = 0 corresponds to underconfidence. This bias gives rise to a misspecified model

of how sales are generated—the artist overestimates or underestimates the expected

amount of sales for each possible level of effort and each possible value of the market

demand.9 Suppose the artist considers a competing model and may switch to this

model if it fits the data significantly better. Are underconfidence and overconfidence

equally likely to persist? My results reveal an interesting asymmetry—overconfidence

9This modeling approach captures the idea that individuals often commit fundamental attribution
errors and are slower in changing self-perceptions than in updating beliefs about the outside environ-
ment (Miller and Ross, 1975). Heidhues et al. (2018) also adopt this approach and show that both
over- and underconfidence lead to wrong inferences about market demand and inefficient choices of
effort in the long run.
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tends to be more robust than underconfidence.10

Let’s first consider the case of an underconfident artist who believes he has little

talent, b̂ = 0, but entertains a correctly specified competing model that attaches prob-

ability 1 to the true talent b∗ = 1. We can show that the underconfidence model does

not persist against the competing model, as it consistently produces lower accuracy in

fitting the data. To understand why, first note that underconfidence leads the artist

to mistakenly attribute higher-than-expected sales to strong market demand, thereby

encouraging a high level of effort. What comes next is critical: this high effort leads to

a partial correction in the artist’s overestimation of market demand. Due to comple-

mentarity, the marginal return to demand increases with effort, allowing the artist to

explain sales data without an excessive overestimation of market demand. However,

extending this logic, a lower belief in market demand reduces effort and raises belief

again, generating a negative feedback loop. Specifically, repeatedly choosing â1 = 1

shifts the artist’s belief about market demand toward ω̂1 = 4. This strong market

demand then incentivizes a higher effort, â2 = 2. However, choosing â2 subsequently

shifts belief toward a weaker market demand, ω̂2 = 3, making the lower effort â1 opti-

mal. Mathematically, this oscillation between efforts is illustrated by the equations:

(â1 + b∗) · ω∗ = (1 + 1) · 2 = (â1 + b̂) · ω̂1 = (1 + 0) · 4, (1)

(â2 + b∗) · ω∗ = (2 + 1) · 2 = (â2 + b̂) · ω̂2 = (2 + 0) · 3. (2)

Regardless of the artist’s initial belief about the market demand, the artist’s effort

perpetually cycles between 1 and 2, and no single market demand value can perfectly

explain all the data—the model lacks a self-confirming equilibrium. In contrast, the

competing model consistently achieves perfect prediction accuracy in the long run since

it is correct. Consequently, the artist would amass sufficient evidence to discard the

underconfidence model and correct his biased self-perception.

Now, let’s turn to an overconfident artist who believes his talent level is instead given

by b̂ = 2 while also entertaining a correctly specified competing model. In contrast to

the previous case, the overconfidence model exhibits perfect asymptotic accuracy. Note

that overconfidence leads the artist to mistakenly attribute disappointing sales to low

demand and respond by exerting a low effort. Crucially, a choice of lower effort induces

an even lower belief—the marginal return to market demand decreases as effort drops,

necessitating a larger inference-truth gap to rationalize the unsatisfactory sales. The

positively reinforcing dynamics eventually drive the artist to believe that the market

10In Section 5, I extend this example to allow for more general payoffs and outcome distributions.
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demand is ω̂ = 1 and exert an inefficiently low amount of effort â = 0. This steady

state constitutes a self-confirming equilibrium—zero effort is indeed optimal against

the misguided belief about market demand, and this low belief perfectly aligns with

the sales data given the misspecified model:

(â+ b∗) · ω∗ = (0 + 1) · 2 = (â+ b̂) · ω̂ = (0 + 2) · 1. (3)

At this steady state, the overconfidence model and the competing model generate

equally accurate predictions, which suggests that the artist may maintain his overcon-

fidence forever.

However, this is not the end of the story. The equilibrium analysis indicates that

overconfidence has the potential to persist, but it does not rule out switches in the

course of converging to the steady state. The dynamic model switching framework

introduced in Section 3 addresses this concern. My characterization implies that for

the overconfidence model to be globally robust, persisting against the correctly specified

competing model (and many others), it is sufficient and necessary that the associated

prior is sufficiently pessimistic and attaches high enough probability to ω̂ = 1.

3 Framework

3.1 Setup

Objective Environment. Consider an infinitely repeated decision problem with a

myopic agent.11 In each period t = 0, 1, 2, ..., the agent chooses an action at from a

finite set A and subsequently observes the realization of a random outcome yt from

Y . The set of possible outcomes Y is either an Euclidean space, or a compact subset

of an Euclidean space, with at least two elements. The agent’s choice of action may

affect the distribution of the immediate outcome. Conditional on at, outcome yt is

independently drawn from the probability measure Q∗ (·|at) ∈ ∆Y . The true data-

generating process Q∗ ∈ (∆Y)|A| remains fixed throughout. At the end of period t, the

agent obtains a flow payoff ut := u (at, yt) ∈ R. The payoff function u is known to the

agent. Let ht := (aτ , yτ )
t−1
τ=0 denote the observable history in the beginning of period t

and Ht = (A× Y)t denote the set of all such histories. The true DGP and the payoff

function satisfy the following standard assumptions.

11Most of the results extend to a non-myopic agent who maximizes the expected discounted sum
of payoffs based on her current model (see Section 6.2).
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Assumption 1. For all a ∈ A: (i) Q∗ (·|a) is absolutely continuous w.r.t. a common

measure ν, and the Radon-Nikodym derivative q∗ (·|a) is positive and continuous; (ii)

u (a, ·) ∈ L1 (Y ,R, Q∗ (·|a)).12

Under Assumption 1 (i), the true DGP admits a positive and continuous density

q∗(·|a) for each action a ∈ A. When Y is discrete, q∗ (·|a) is the probability mass

function and ν is the counting measure; when Y is a continuum, q∗ (·|a) is the prob-

ability density function and ν is the Lebesgue measure. Assumption 1 (ii) ensures

that the agent’s objective expected period-t payoff, ut :=
∫
Y u (at, y) q

∗ (y|at) ν (dy), is
well-defined and an objectively optimal action exists.

Subjective Models. The decision problem becomes straightforward if the agent

knows the true DGP—she can simply play an objectively optimal action in every

period. However, the agent does not necessarily have access to this knowledge and

instead relies on subjective models to guide decisions. Intuitively, a model represents

a theory of how actions affect the outcome distribution. The universe of models,

denoted by Θ, is the set of all possible finite collections of data-generating processes,

i.e. Θ := {θ ∈ P
(
(∆Y)|A|) : |θ| < ∞}. Each model θ ∈ Θ consists a finite collection

of predictions regarding the DGP. For ease of interpretation, each prediction is labeled

by a parameter value within a model-specific parameter space Ωθ. Given a parameter

value ω ∈ Ωθ, model θ predicts a data-generating process {Qθ(·|a, ω)}a∈A. A model

with a larger parameter space allows for a greater number of potential DGPs. I assume

the agent can only entertain models satisfying Assumption 2 and denote the set of such

models as Θ ⊂ Θ.

Assumption 2. For each θ ∈ Θ and each a ∈ A: (i) for all ω ∈ Ωθ, Qθ (·|a, ω) is

absolutely continuous w.r.t. measure ν, and the Radon-Nikodym derivative qθ (·|a, ω) is
positive and continuous; (ii) for all ω ∈ Ωθ, u (a, ·) ∈ L1

(
Y ,R, Qθ (·|a, ω)

)
; (iii) for all

ω ∈ Ωθ, there exists ra ∈ L2 (Y ,R, ν) such that ra is continuous and
∣∣∣ln q∗(·|a)

qθ(·|a,ω)

∣∣∣ ≤ ra (·)
a.s.-Q∗ (·|a).

Assumption 2 (i) and (ii) mirror Assumption 1, ensuring the existence of a density

function and that the expected payoffs predicted by any model are well-defined. As-

sumption 2 (iii) requires that the log-likelihood ratio between the predictions of any

model and the true DGP is bounded almost surely, which also implies that no model

rules out events that occur with positive probability under the true DGP.

12Lp (Y,R, ν) denotes the space of all functions g : Y → R s.t.
∫
|g (y)|p ν (dy) < ∞.
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As conventional in the literature, a model in Θ is said to be correctly specified if its

predictions include the true DGP, and misspecified otherwise.

Definition 1. A model θ ∈ Θ is correctly specified if there exists ω ∈ Ωθ such that

q∗ (·|a) ≡ qθ (·|a, ω) ,∀a ∈ A. Otherwise, it is misspecified.

I denote the smallest correctly specified model as θ∗. Namely, this model solely

consists of the true DGP, and hence I refer to θ∗ as the true model.

3.2 The Switcher’s Problem

The agent considers a restricted set of models Θ† ⊆ Θ. It is often assumed in the litera-

ture that the decision-maker is a dogmatic modeler who uses a single model throughout.

For convenience, I refer to a dogmatic modeler with Θ† = {θ} as a θ-modeler. My pri-

mary focus here diverges from this conventional assumption, as I explore the concept

of a switcher. A switcher employs only one model at any given moment but can switch

between different models across periods. For the main analysis, I restrict attention

to the two-model case where Θ† = {θ, θ′}.13 The agent’s model choice in period t is

denoted by mt ∈ Θ†, where the initial model choice is m0 = θ. A switcher’s learning

environment can be summarized by a quadruple, E = (θ, θ′, πθ0, π
θ′
0 ), where the first

two elements represent the initial model and the competing model, respectively, and

the last two correspond to the agent’s prior beliefs regarding the parameters of these

models, denoted by πθ0 ∈ ∆Ωθ and πθ
′

0 ∈ ∆Ωθ′ .14 Without loss of generality, all priors

are assumed to have full support. I now describe how the agent operates within a

model and switches across models.

Operating within a model. When adopting model mt in any period, the agent

first updates her belief regarding its parameters based on the entire history of realized

outcomes. While it is technically adequate for the agent to only update the model cur-

rently in use, for the sake of clarity, I introduce two recursive belief processes—one for

each model.15 In particular, let πθt = Bθ(at−1, yt−1, π
θ
t−1) and π

θ′
t = Bθ′(at−1, yt−1, π

θ′
t−1),

13This model switching framework can be extended to allow for three or more models in Θ†. This
extension is analyzed in Section 6.1.

14I treat these priors as part of the learning environment rather than as primitives of the subjective
models. This choice is made for the sake of expositional convenience, allowing me to separately
characterize which models persist or are robust under at least one prior and to identify which specific
priors confer these properties (see Section 4).

15Note that neither the action rule nor the switching decision requires the agent to use her posterior
beliefs for the model that is not currently in use.

13



where Bθ : A× Y ×∆Ωθ → ∆Ωθ returns the posterior belief over θ’s parameters cal-

culated from Bayes’ rule given a prior belief and a pair of action and realized outcome,

and Bθ′ is defined analogously for θ′. The agent then selects an action based on a pure

policy that is optimal under the current model mt. The policy under θ, denoted by

f θ : ∆Ωθ → A, is a selection from the correspondence Aθm : ∆Ωθ ⇒ A that returns all

myopically optimal actions at a given belief. For any belief πθt ∈ ∆Ωθ,

Aθm(π
θ
t ) := argmax

a∈A

∑
ω∈Ωθ

πθt (ω)

∫
y∈Y

u(a, y)qθ(y|a, ω)ν(dy). (4)

Analogously, the policy under θ′, denoted by f θ
′
, is a selection from Aθ

′
m.

Switching across models. In the initial period (t = 0), the agent adopts θ and

operates under this model. In subsequent periods (t ≥ 1), I assume that the agent

employs a Bayes factor rule to determine the model choice mt. At period t, the agent

calculates the Bayes factor λt and compares it with a fixed switching threshold α ≥ 1.

The Bayes factor gauges the overall evidence supporting model θ′ relative to θ by

comparing the likelihoods of the data under the two models. The likelihood of the

data under a model is a weighted sum of the likelihoods of the data under all DGPs

included in the model, with weights given by the prior. Specifically,

λt :=
ℓt(θ

′)

ℓt(θ)
:=

∑
ω∈Ωθ πθ0(ω)ℓt(θ, ω)∑

ω′∈Ωθ′ πθ
′

0 (ω
′)ℓt(θ′, ω′)

, (5)

where

ℓt(θ, ω) :=
t−1∏
τ=0

qθ (yτ |aτ , ω) , (6)

and ℓt(θ
′, ω′) is defined analogously. If one is willing to assume that the agent is

updating both models simultaneously, then λt can also be expressed recursively in

terms of the two posteriors,

λt = λt−1 ×
∑

ω′∈Ωθ′ πθ
′
t−1 (ω

′) qθ
′
(yt−1|at−1, ω

′)∑
ω∈Ωθ πθt−1 (ω) q

θ (yt−1|at−1, ω)
(7)

This recursive expression implies that the agent assesses a model’s performance based

on both its historical track record and the most recent observation, accounting for

parameter estimates derived from past data.
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Model switching works as follows. If mt−1 = θ, then the agent switches to mt = θ′

if and only if the Bayes factor exceeds the switching threshold, λt > α. Conversely, if

mt−1 = θ′, the agent switches back to mt = θ if and only if λt drops below the inverse

of the switching threshold, λt < 1/α. In cases where 1/α ≤ λt ≤ α, the agent does not

consider the existing evidence sufficient to warrant a model switch. The parameter α

thus serves as a measure of the stickiness of the switching process, with larger values

of α requiring stronger evidence for a switch.16

Note that within any single period t, a θ-modeler behaves identically as a switcher

with mt = θ who shares the same belief over the parameters of θ. Both types of agents

update their belief over the parameters of model θ and then choose a myopically optimal

action. However, while a θ-modeler always uses a fixed decision rule f θ, the switcher’s

decision rule depends on her current model choice. Consequently, a θ-modeler and a

switcher may exhibit significant differences in behavior and beliefs across periods.

3.3 Discussion on the Switching Rule

Bayes factor. The Bayes factor rule is a common model selection criterion in Bayesian

statistics and is a natural choice in my environment for the following reasons. First,

when α = 1, we may micro-found this switching rule by considering an agent who

believes that one of the two models is correct and aims at maximizing the probability

of using the correct model. To see this, observe that if our agent were to calculate the

posterior odds of two models based on a uniform prior, she would find that the posterior

odds ratio is precisely given by the Bayes factor.17 Second, the Bayes factor rule is

flexible in that it could be easily formulated for any model and any data-generating

processes, without imposing assumptions about the underlying parametric structure.

Moreover, common alternative rules in statistics such as the Bayesian information

criterion (BIC) and the Akaike information criterion (AIC) are shown to approximate

the Bayes factor under certain assumptions about the parametric family and the prior.

Finally, several recent studies in the literature on model-based learning and persuasion

16The symmetry in the switching threshold is not important. As will be shown later, only the
threshold that governs the switching from the initial model to the competing model matters for the
characterization of robust models.

17More generally, in simple environments where the agent obtains one-shot information and her
payoff only depends on the employed model (for example if each model prescribes a single action),
the optimal switching criterion involves the use of a Bayes factor. In more complex environments like
the one I consider in the paper, the exact characterization of the optimal switching rule is a difficult
question and the answer likely depends on the specific decision problem.
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have also used the Bayes factor rule.18

Sticky switching. I allow the agent to exhibit switching stickiness, as indicated by

the assumption that α may be larger than 1. Switching stickiness is well observed in

reality and can stem from a variety of causes, such as conservatism, concerns about

overreaction to noises, or mental and physical costs associated with model switching.

In the statistics literature on Bayesian model selection, Kass and Raftery (1995) rec-

ommend using a threshold of 20 as the requirement of “strong evidence” in favor of

the competing model. One important goal of this paper is to derive the implications

of stickiness on model persistence.

4 Main Results

4.1 Definitions

Model θ is said to persist against θ′ if the agent eventually stops switching and settles

on model θ with positive probability.19 This implies that if θ persists against θ′, then

with positive probability, the agent resembles a θ-modeler in the long term. Conversely,

if θ fails to persist against θ′, then the agent either adopts the competing model per-

manently or oscillates forever between the two models. In both scenarios, the learning

outcomes of the agent can significantly diverge from that of a θ-modeler.

Definition 2. Model θ persist against θ′ at priors πθ0 and π
θ′
0 if, given E = (θ, θ′, πθ

′
0 , π

θ′
0 ),

there exists T ≥ 0 such that with positive probability, mt = θ for all t ≥ T .

Two observations about Definition 2 are in order. First, note that persistence is

prior-sensitive—a model could persist against a given competing model at certain pri-

ors but not other priors. Note that priors potentially affect persistence in two ways.

Priors play a direct role in the calculation of the Bayes factor. In addition, priors affect

the agent’s behavior and, as a result, endogenously influence the distribution of random

outcomes and the model fit. We are interested in not only identifying which models

persist but also understanding how their persistence depends on the agent’s prior belief

about the data-generating process. Second, persistence is a relative concept—a model

18For example, in Galperti (2019) the agent switches from a restricted worldview to a complete
worldview when the observed evidence occurs with probability zero under the restricted worldview. In
Schwartzstein and Sunderam (2021) and Aina (2023), the agent switches from a model to an alternative
when the alternative generates a better overall data fit. The former switching rule resembles the Bayes
factor rule with α = ∞ and the latter is equivalent to the Bayes factor rule with α = 1.

19I construct the underlying probability space in Appendix A.
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could persist against some models but not other models. However, the specific compet-

ing models that may arise and the priors assigned to them are context-dependent and

hard to predict. This observation motivates a robustness approach, i.e., characterizing

models that persist against a wide range of competing models with varying priors.

Before we define model robustness, note that the scope of robustness can vary con-

siderably with the set of admissible competing models and priors, particularly in terms

of their distance from the initial model and its prior (i.e. allowable maximum step size

of switching). I introduce two concepts of robustness that establish upper and lower

boundaries: global robustness allows for an unlimited step size of switching, while local

robustness restricts to a minimal step size of switching. Formally, model θ is said to

be globally robust at a given prior if it persists irrespective of the competing model it

is compared against and the prior assigned to that model. Note that the property of

being prior-sensitive is inherited by global robustness from the concept of persistence.

When θ is not globally robust at any prior, one can always identify a competing model

associated with some prior that almost surely replaces θ infinitely often.

Definition 3 (Global robustness). Model θ ∈ Θ is globally robust at prior πθ0 if θ

persists against every competing model θ′ ∈ Θ at πθ0 and πθ
′

0 for every πθ
′

0 ∈ ∆Ωθ′ .

To define local robustness, I first provide a measure to quantify the distance between

two arbitrary models θ and θ′ and their priors. Since both models are a finite collection

of DGPs, a natural candidate for measuring their distance is the Hausdorff distance

between the two sets of DGPs, where the distance between any two DGPs is measured

based on the Prokhorov metric.20 For convenience, denote the DGP to which model

θ and parameter ω correspond by Qθ,ω. I define the distance between Qθ,ω and Qθ′,ω′

as the maximum Prokhorov distance between the outcome distributions across all ac-

tions, d(Qθ,ω, Qθ′,ω′
) := maxa∈A dP (Q

θ,ω
a , Qθ′,ω′

a ). The distance between model θ and θ′

is then given by the Hausdorff metric, d(θ, θ′) := dH
(
{Qθ,ω}ω∈Ωθ , {Qθ′,ω′}ω′∈Ωθ′

)
. This

leads to a natural definition of an ϵ-neighborhood of model θ, denoted by Nϵ (θ) :=

{θ′ ∈ Θ : d(θ, θ′) < ϵ} . Note that while prior πθ0 and prior πθ
′

0 are defined on potentially

different parameter spaces, each of them corresponds to a distribution over the set of

20The Prokhorov metric measures the distance between any two probability distributions on the
same metric space. For any two probability measures µ and µ′ over Y, the Prokhorov distance is
given by dP (µ, µ

′) := inf {ϵ > 0|µ (Y ) ≤ µ′ (Bϵ (Y )) + ϵ and µ′ (Y ) ≤ µ (Bϵ (Y )) + ϵ for all Y ⊆ Y} .
The results in this paper also hold for alternative metrics such as Kullback-Leibler divergence or
total variation. The Hausdorff metric measures how far two subsets of the same metric space
are from each other. For any two sets X and Z, their Hausdorff distance is dH(X,Z) =
max{supx∈Z d(x, Z), supz∈Z d(X, z)}.
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all DGPs. With abuse of notation, we use dP (π
θ
0, π

θ′
0 ) to denote the Prokhorov distance

between the implied distributions over DGPs, and define a ϵ-neighborhood of prior πθ0
within the set of possible priors for θ′ as N θ,θ′

ϵ (πθ0) :=
{
πθ

′
0 ∈ ∆Ωθ′ : dP (π

θ
0, π

θ′
0 ) < ϵ

}
.

Local robustness requires that there exists some positive ϵ such that the model

persists against nearby models with nearby priors within the relevant ϵ-neighborhoods.

Hence, a locally robust model persists as long as the agent takes sufficiently small steps

by considering sufficiently close perturbations. By contrast, if θ is not locally robust,

there must exist a local perturbation of θ that replaces model θ infinitely often.

Definition 4 (Local robustness). Model θ ∈ Θ is locally robust at prior πθ0 if there

exists ϵ > 0 such that θ persists against every competing model θ′ ∈ Nϵ(θ) at priors π
θ
0

and πθ
′

0 for every πθ
′

0 ∈ N θ,θ′
ϵ (πθ0).

4.2 Which Models Can Be Robust?

I begin the analysis by characterizing models that are locally or globally robust for at

least one full-support prior. This characterization is useful because it directly speaks

to the question of which models can be robust—failing to be robust at any full-support

prior implies non-robustness across all initial conditions. Since all priors are assumed

to be full-support without loss, I sometimes omit this adjective for convenience.

It is instructive to start our analysis with a special case: which models can persist

against a correctly specified model? It is a well-known result that with a correctly

specified model, a learner assigns probability 1 to a data-generating process that pre-

dicts the true outcome distribution in the limit (Easley and Kiefer, 1988). It follows

that such a model perfectly matches the data in the long term, and thus any model

that persists in its presence must also have perfect prediction accuracy in the limit.

Since outcomes are endogenously generated by actions, this observation suggests that

the agent, possibly after a lot of back-and-forth switching, eventually converges to a

self-confirming equilibrium as defined below.

Definition 5. A strategy σ ∈ ∆A is a self-confirming equilibrium (SCE) under model

θ if there exists a supporting belief πθ ∈ ∆Ωθ such that the following conditions hold.

(i) Optimality: σ is myopically optimal against πθ, i.e. σ ∈ ∆Aθm(π
θ).

(ii) Consistency: πθ is consistent at σ in that qθ(·|a, ω) ≡ q∗(·|a) for all a ∈ supp(σ)

and all ω ∈ supp(π).
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In an SCE, the agent plays myopically optimal actions based on a consistent belief

which ensures that the corresponding model prediction fully aligns with the objective

outcome distribution. For convenience, let Ωθ(σ) denote the parameters in model θ

that correctly predict the outcome distribution when the agent plays any action in

supp(σ). Then the consistency condition can be alternatively stated as πθ ∈ ∆(Ωθ(σ)).

Notably, an SCE may not be efficient. While consistency implies correct predictions

regarding the payoffs achieved in equilibrium, the model could have entirely incorrect

predictions for payoffs associated with actions off the equilibrium path.

But persistence against a correct model implies more than the existence of an SCE—

the SCE must also be reachable and stable. In particular, the agent should, with

positive probability, end up playing only the equilibrium actions under model θ. If

non-SCE actions are played infinitely often, the Bayes factor would still diverge to

infinity and result in a permanent abandonment of model θ. Note that on paths where

θ is adopted forever, a switcher eventually behaves no differently than a θ-modeler.

Thus, a necessary condition for model θ to persist is that a θ-modeler eventually only

plays the equilibrium actions with positive probability. I refer to this stability notion

as p-absorbingness, where “p” means that the equilibrium is absorbing with positive

probability.

Definition 6. Strategy σ ∈ ∆A is p-absorbing under θ if there exists a full-support

prior πθ0 and some integer T ≥ 0 such that, with positive probability, a θ-modeler only

plays actions in supp (σ) for all t ≥ T .

P-absorbingness differs from absorbingness or other existing stability notions of

self-confirming equilibria in the literature. In particular, it does not imply that the θ-

modeler’s or the switcher’s action sequence converges to a single action in the support

of σ, or their action frequency converges to σ, or convergence of any kind occurs with

probability 1.21 Rather, it allows for non-convergent behavior within the support of

σ, but rules out the scenario where the modeler almost surely plays actions outside

the support of σ infinitely often.22 Although p-absorbingness is a relatively weak

requirement, not all self-confirming equilibria are p-absorbing. Since a θ-modeler’s

21For example, p-absorbingness is weaker than the stability notion proposed by Fudenberg et al.
(2021). By their definition, a pure equilibrium a∗ under θ is stable if for every κ ∈ (0, 1), there exists
a belief π ∈ ∆Ωθ such that for any prior πθ

0 sufficiently close to π, the dogmatic modeler’s action
sequence at converges to a∗ with probability larger than κ. They do not define a stability notion for
a mixed equilibrium.

22Indeed, a dogmatic modeler’s action may never converge even when she eventually only plays the
actions in the support of a p-absorbing SCE (see Example 3 in Appendix C).
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learning outcome is independent from the model switching process, we can further

characterize p-absorbingness with conditions based on the primitives of model θ only.

Lemma 1 shows that quasi-strictness is a simple sufficient condition for p-absorbingness.

Lemma 1. A self-confirming equilibrium is p-absorbing under θ if it is quasi-strict.

As conventional in the literature, a self-confirming equilibrium σ is said to be quasi-

strict if there exists a supporting belief πθ such that supp (σ) = Aθm(π
θ), that is, any

action outside the support of σ is strictly suboptimal given πθ. Quasi-strictness en-

sures that at any belief sufficiently close to the equilibrium belief, it is strictly optimal

to play the actions in the support of the equilibrium strategy. Since the equilibrium

is self-confirming, the equilibrium belief is consistent with the actual outcome distri-

bution, and thus with positive probability, a θ-modeler’s belief stays within a small

neighborhood of the equilibrium belief. Taken together, this implies that starting from

a prior sufficiently close to the equilibrium supporting belief, the θ-modeler plays the

SCE forever with positive probability. Therefore, such an SCE is p-absorbing.

I conclude our analysis of a correctly specified competing model with Lemma 2.

Lemma 2. If model θ persists against a correctly specified model θ′ at some priors πθ0
and πθ

′
0 , then there exists a p-absorbing SCE under θ.

I say that a model has perfect asymptotic accuracy or is asymptotically accurate if it

admits at least one p-absorbing SCE. At first glance, Lemma 2 offers merely a neces-

sary condition for global robustness. On one hand, perfect asymptotic accuracy appears

unnecessarily strong for local robustness, given that local robustness only requires per-

sistence against local perturbations (any local perturbation of any misspecified model

is necessarily misspecified). On the other hand, it is unclear whether the existence of a

p-absorbing SCE alone would be sufficient for global robustness, even if the agent can

start from any arbitrary full-support prior. Lemma 2 does not tell us whether perfect

asymptotic accuracy is also sufficient for a model to persist against a correctly specified

model, and even if this is true, it does not necessarily imply persistence against every

other competing model in Θ. Surprisingly, as I show in Theorem 1, when switching

exhibits stickiness, perfect asymptotic accuracy is both necessary for local robustness

and sufficient for global robustness, which equates the two robustness notions provided

flexibility in the prior.

Theorem 1. Suppose α > 1, then the following are equivalent:

(i) Model θ is globally robust for at least one full-support prior.
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(ii) Model θ is locally robust for at least one full-support prior.

(iii) There exists a p-absorbing SCE under model θ.

I now discuss the implications of this result and leave the proof intuition for the next

subsection. First, Theorem 1 provides a formal microfoundation for the persistence

of certain types of misspecified models. A misspecified model can persist against any

arbitrary competing model as long as it has perfect asymptotic accuracy as captured by

the existence of a p-absorbing SCE. Notably, Theorem 1 does not depend on switching

threshold α as long as α > 1, meaning that the sets of models that can be locally or

globally robust do not expand as switching becomes stickier.

Second, Theorem 1 offers a new perspective for understanding local and global

robustness by showing the equivalence between (i) and (ii). If a model fails to be

globally robust, the switcher need not go far to find an attractive alternative—models

that do not persist against major paradigm shifts are also vulnerable to local changes.

This observation highlights the necessity of perfect asymptotic accuracy for robust

misspecified models.

Third, Theorem 1 reveals that the demanding notion of global robustness amounts to

the requirement that θ persists against one correctly specified model at some prior. In

other words, if θ can persist against a competing model that assigns a tiny probability

to the true DGP, then it is also capable of persisting against the true model, or any

other model with an arbitrarily complex parameter space. Conversely, a model that

fails to be globally robust does not persist as long as the agent considers any correctly

specified competing model. As an immediate corollary, any correctly specified model

is globally robust since a model must persist against itself.

The above observation, combined with Lemma 1, immediately leads to the following

corollary. This result simplifies the application of Theorem 1, allowing us to quickly

determine whether a given model can be locally or globally robust by confirming its

correctness or its ability to induce a quasi-strict SCE.

Corollary 1. Suppose α > 1, then model θ is locally or globally robust for at least one

prior if θ is correctly specified or there exists a quasi-strict SCE under θ.

When switching exhibits no stickiness, meaning α = 1, the set of models that can

be locally or globally robust for at least one full-support prior shrinks discontinuously.

In this case, robustness requires not only asymptotic accuracy but also the prior to

be fully concentrated on the set of p-absorbing self-confirming equilibria. A detailed
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exploration of this case is deferred to Section 4.4, where we will investigate the role of

the prior.

4.3 Proof idea of Theorem 1

In this section, I provide an explanation and intuition for the proof of Theorem 1,

following the order of (i)⇒(ii)⇒(iii)⇒(i).

From (i) to (ii). It directly follows from the definitions of global and local robustness

that the former necessarily implies the latter.

From (ii) to (iii). Local robustness requires perfect asymptotic accuracy. Consider

an initial model θ that is not asymptotically accurate. Although the agent is restricted

to contemplate only local perturbations, such perturbations are unconstrained and

can be made towards the direction of higher asymptotic accuracy. Specifically, we

could construct a competing model θ′ within the ϵ-neighborhood of θ such that θ′ fits

data better than θ. To do this, we simply take the predictions of θ′ to be a convex

combination between the predictions of θ and the true DGP for every action inA. Since

the Kullback-Leibler (KL henceforth) divergence is convex, the mixture model θ′ yields

a strictly lower KL divergence than model θ in the limit. While the discrepancy in the

KL divergence between the models can be arbitrarily small, the Bayes factor diverges

to infinity almost surely as the agent draws a sufficient number of outcome realizations.

Therefore, the Bayes factor must eventually surpass the switching threshold and the

agent will switch to θ′ permanently.23

From (iii) to (i). Asymptotically accurate models can be globally robust. This

result may appear straightforward at first glance, as p-absorbingness ensures that the

SCE is reachable from a full-support prior and consistency ensures that model θ fits

the data weakly better than any competing model in the equilibrium. However, the

fact that the SCE is reachable for a θ-modeler from a certain prior does not imply

that it is also reachable for our switcher agent from the same prior. To illustrate this,

first note that in the active learning framework that is considered here, a dogmatic

modeler’s behavior and beliefs are endogenous and can mutually influence each other.

For a switcher, in addition to her behavior and beliefs within each model, her model

23The Kullback-Leibler divergence of a density q from another density q′ is given by DKL (q ∥ q′) =∫
Y q ln (q/q′) ν (dy). The KL divergence is an asymmetric non-negative distance measure between q
and q′, which is minimized to zero if and only if q and q′ coincide almost everywhere. It is convex
in the following sense: for any two pairs of densities (q1, q2) and (q′1, q

′
2) and any γ ∈ [0, 1], we have

DKL (λq1 + (1− λ)q2 ∥ λq′1 + (1− λ)q′2) ≤ λDKL (q1 ∥ q′1) + (1− λ)DKL (q2 ∥ q′2).
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qθ(1|a, ω) g b

a1 0.5 0.3

a2 0.4 0.4

qθ
∗
(1|a, ω) ω∗

a1 0.5

a2 0.5

Table 2: Initial model θ and competing model θ′ in Example 1.

choice is also endogenous, and all three of these endogenous objects can influence one

another. This complex interaction can lead to challenges that prevent the agent from

converging to the SCE, even when the SCE is p-absorbing. In particular, the outcome

realizations that drive a dogmatic modeler to the SCE may, in fact, trigger a switch

away from model θ, making its adoption self-defeating.

Such challenges are inherent to the multiple-model learning framework and thus

may be of independent interest to future research pursuits on problems other than

persistence and robustness. Therefore, I will first take some time to elucidate this issue

further with Example 1. For simplicity, in this example I take the competing model to

be the true model, but a similar phenomenon can occur with a competing model that

is arbitrarily close to the initial model.

Example 1 (Self-defeating adoption). In each period, an agent chooses from two tasks

at ∈ {a1, a2} and observes the output of the chosen task yt ∈ {0, 1}, where 0 represents

failure and 1 represents success. The true DGP prescribes that successes and failures

happen with equal probability 0.5 for either task. The agent is an expected output

maximizer, so he would be indifferent between the tasks if the true DGP was known.

The agent holds a subjective model θ that presumes the success rate may depend

on both the task type and his luck ω ∈ Ωθ = {g, b}, where g represents good luck

and b represents bad luck (see Table 2). The agent believes that his luck is fixed and

has a uniform prior over his luck, i.e. πθ0(g) = 0.5. Under model θ, the agent believes

Task 1 is risky and success occurs more often if he has good luck, while Task 2 is safe

and its outcome is independent of his luck. Besides, the agent is overall pessimistic

under θ because the assumed success rate is always (weakly) lower than its true level.

His policy under θ prescribes Task 1 if and only if good luck is more likely than bad

luck, i.e. πθt (g) ≥ 0.5.24 In addition, the agent entertains the competing model θ∗ that

correctly predicts the true success rate. Under model θ∗, the agent is indifferent and

always chooses Task 1. We consider the case where his switching threshold is 1.1.

Choosing Task 1 is a strict self-confirming equilibrium under θ, supported by a

24The uniform prior is assumed for simple exposition. The mechanism in this example does not
depend on the fact that the agent starts off being exactly indifferent between the tasks.
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Figure 1: Scenario analysis in Example 1.

degenerate belief at g. To see why, note that the risky task is strictly optimal when

the agent believes he has good luck; meanwhile, the superstitious belief of good luck

offsets the overall pessimism and the model correctly predicts the success rate.

Starting from a uniform prior, a θ-modeler converges to playing Task 1 forever with

positive probability. However, it turns out that model θ does not persist against model

θ∗ at the given priors, because any sequence of outcome realizations that leads to

choosing a1 must eventually trigger a model switch. As illustrated in Fig. 1, if the first

realized outcome is a failure, the agent believes that he is more likely to have bad luck

and thus switches his task choice to the safe task a2 (Scenario 1); if the first realized

outcome is a success, the agent switches his model choice to the more optimistic model

θ∗ in the next period (Scenario 2). In Scenario 1, the safe task choice causes the agent

to stop updating on his luck. As a result, the agent never changes back to the risky

task a1 as long as he remains under model θ. Since θ is incorrectly pessimistic when

a2 is chosen, the agent eventually switches to the correct model θ∗ and enters Scenario

2. Once Scenario 2 occurs, the agent switches back to the overall pessimistic model θ

only under the circumstance that he observes more failures than successes. But if so,

the resulted posterior πθt assigns higher probability to bad luck than good luck, which

again induces the agent to choose the safe task a2, bringing the agent back to Scenario

1. Eventually, the agent must abandon model θ and adopt the competing model θ∗

forever. Therefore, θ does not persist against θ∗ at the given priors.

Several factors contribute to the self-defeating result in Example 1. First, the agent’s

model choice and his belief on luck are tightly correlated given the particular structure
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of the models. In order for the agent to choose the risky task, he must believe in good

luck more than bad luck, but the successes needed to induce this belief inevitably lead

to a switch to the more optimistic competing model. Second, the agent’s the task choice

and model choice are too sensitive to early outcome realizations. Since the agent’s prior

πθ0 is relatively far away from the SCE supporting belief and the switching threshold α is

relatively low, a single outcome observation is powerful enough to sway the agent’s task

choice or the model choice. Last but not least, the safe choice constitutes an absorbing

trap in model θ because it causes the agent to stop updating his belief within θ. Indeed,

the agent never finds it optimal to choose the risky option again under model θ once

the agent enters the trap.

However, the agent can avoid falling into the trap if their initial beliefs are sufficiently

close to the SCE supporting belief. Specifically, if the agent starts with a prior that

assigns a sufficiently high probability to good luck, his task choice becomes less sensitive

to early failures; meanwhile, his initial model becomes overall less pessimistic, and thus

his model choice becomes less sensitive to early successes. The proof of Theorem 1 uses

precisely this idea to show that there exists a full-support prior πθ0 sufficiently close

to the SCE supporting belief, such that self-defeating behavior does not arise with

probability 1 and the initial model θ persists. First, I establish the existence of a

full-support prior such that a θ-modeler consistently plays a p-absorbing SCE, and her

belief remains within a small neighborhood of the equilibrium belief with arbitrarily

high probability. Second, I employ the maximal inequality to show that the probability

of the likelihood ratio between the competing model and the true model ever exceeding

the switching threshold α is bounded away from 1 (this step is trivial in Example 1).

Finally, I show that this aforementioned likelihood ratio approximates the Bayes factor

when the agent continues playing the SCE and the prior is highly concentrated around

the SCE. Taken together, it follows that the probability of the agent playing the SCE

indefinitely without switching to the competing model is strictly positive.

4.4 When are Models Robust?

Theorem 1 characterizes which models can be locally and globally robust based on

their asymptotic accuracy but it remains silent about under which priors these models

are locally or globally robust. The analysis of self-defeating adoption in Section 4.3

suggests that determining such priors becomes challenging in the presence of traps,

though we know such priors do exist. To explore the potential role of priors, I propose

two assumptions that eliminate traps from the model while keeping the prior fixed.
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Note that if in Example 1, model θ predicts even a slight dependence of success rate on

the agent’s luck for the safe task, the agent continues updating on luck after choosing

the safe task. This eliminates the trap that would otherwise lock in the agent’s task

choice, allowing the adoption of model θ to be non-self-defeating—we can construct

a finite sequence of outcomes (non-trivial and requiring proof) to make the agent

increasingly confident in model θ while attaching high probability to having good luck.

To rule out traps of the sort described in Example 1, I assume the model is identifiable,

as defined below.

Definition 7. Model θ is identifiable if the predicted DGPs in θ prescribe different

outcome distributions for each action, i.e. qθ(·|a, ω) ̸= qθ(·|a, ω′) for all distinct ω, ω′ ∈
Ωθ and a ∈ A.

Non-identifiability is not the only cause of traps; there is another type of trap

that is more technical and arises when none of the p-absorbing SCE under model θ

is quasi-strict. In this case, there exists an action that is optimal given the equilib-

rium supporting belief but fails to be self-confirming. Under certain policies, these

actions can also function as traps, meaning that once played, the agent is precluded

from ever reverting to playing the SCE actions under the same model (see Example 5

in Appendix C). Definition 8 collects the two no-trap conditions, both of which are

relatively mild and can be easily verified from the primitives.25

Definition 8. Model θ has no traps if θ is identifiable and all p-absorbing SCEs (if

exists) under θ are quasi-strict.

In the absence of traps, a reasonable conjecture is that any asymptotically accurate

model is both locally and globally robust at all priors. I will now demonstrate that

while this conjecture holds for local robustness, global robustness still requires the

prior to be concentrated around the p-absorbing SCEs, referred to as a property of

prior tightness. Theorem 2 establishes that without traps, prior tightness is a sufficient

and necessary condition for global robustness given a specific prior. To state the result,

let Cθ represent the set of parameters in θ that support at least one p-absorbing SCE,

referred to as the set of consistent parameters in θ. In other words, for each ω ∈ Cθ,

there exists a p-absorbing SCE under θ with supporting belief δω.
26 By definition, Cθ

is non-empty if and only if model θ admits at least one p-absorbing SCE.

25For example, it is straightforward to show that the artist’s overconfidence model in Section 6
has no traps since each level of market demand corresponds to a different outcome distribution for all
effort choices, and the model induces a unique strict SCE.

26Note that when θ is identifiable, no parameters predict the same outcome distribution, and thus
the supporting belief of any SCE must be pure.
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Theorem 2. Suppose α > 1 and model θ has no traps, then the following are true:

(i) Model θ is globally robust at prior πθ0 if and only if Cθ ̸= ∅ and πθ0(C
θ) ≥ 1/α.

(ii) Model θ is globally robust at all full-support priors if and only if Cθ = Ωθ.

(iii) Model θ is locally robust at all full-support priors if and only if Cθ ̸= ∅.

The idea of proof is explained in the next subsection. Theorem 2 clarifies the funda-

mental distinction between the two notions of robustness under sticky switching: local

robustness is prior-free, but global robustness is prior-dependent. Hence, limiting the

maximal allowable step size of switching does not expand the set of robust models,

but allows robust models to persist under more diverse priors. Specifically, local ro-

bustness at any single full-support prior automatically implies local robustness at all

full-support priors. This underscores that achieving perfect asymptotic accuracy, as

indicated by Cθ ̸= ∅, is both a sufficient and necessary condition for a model to exhibit

robustness when the agent engages in local exploration for an alternative model.

Theorem 2 provides a closed-form quantification of how concentrated the prior must

be on Cθ in order to support global robustness. In particular, the tightness of the prior,

quantified by πθ0(C
θ), multiplied by the switching stickiness, quantified by the switching

threshold α, must be weakly larger than 1. This relationship implies perfect substi-

tutability between the roles of prior tightness and switching stickiness in facilitating

model robustness. When switching is highly sticky and the agent demands substan-

tial evidence for a switch, the prior tightness requirement has less bite—in fact, any

asymptotically accurate model can be globally robust at any given full-support prior,

provided that switching is sufficiently sticky. Conversely, when switching is relatively

smooth and the agent requires minimal evidence for a switch, global robustness requires

priors to be tightly centered around the set of SCEs.

Theorem 2 also suggests a trade-off when considering the impact of a model’s size

on its robustness. While including more predictions in a model increases the likelihood

of achieving perfect asymptotic accuracy, it may also dilute the prior and result in

a decrease in the prior probability assigned to consistent parameters. In fact, global

robustness holds at all priors if and only if every parameter in model θ induces a

p-absorbing self-confirming equilibrium, Cθ = Ωθ. Models that exhibit the strongest

form of robustness are those asymptotically accurate models that are simple enough

for the number of p-absorbing SCEs they induce to be equal to the number of their

total predictions. Conversely, when Cθ ̸= Ωθ, global robustness fails at any given

full-support prior, provided that the switching threshold is sufficiently close to 1.
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Theorems 1 and 2 together draw an interesting comparison between misspecified

models and correctly specified models in terms of their robustness properties. On one

hand, all correctly specified models are locally robust at all full-support priors and

globally robust for at least one full-support prior, which is achieved only by a subset

of asymptotically accurate misspecified models. On the other hand, some misspecified

models can be globally robust at more diverse priors if they have a simple structure or

induce a large set of SCEs. I further illustrate this comparison in Application 5.2.

Finally, I examine the scenario of perfectly non-sticky switching, i.e. α = 1, and

provide a characterization in Theorem 3. In this case, perfect asymptotic accuracy

is no longer sufficient for either local robustness or global robustness even with prior

flexibility. Instead, we need every parameter in the model to induce a p-absorbing

SCE, hence full prior tightness.

Theorem 3. Suppose model θ has no traps and α = 1, then model θ is locally or

globally robust at any full-support prior πθ0 if and only if Cθ = Ωθ.

Theorem 3 generates three immediate takeaways. First, the set of models that can

be locally robust or globally robust shrinks discontinuously at α = 1, highlighting the

crucial role of switching stickiness in allowing more forms of misspecification to persist.

Notably, while the set of priors that support global robustness changes continuously

with α, the change is surprisingly dramatic for local robustness since it imposes no

requirement on the prior when α > 1 but demands full prior concentration on p-

absorbing SCEs when α = 1. Second, this result reveals an equivalence between

two strong notions of robustness—global robustness when switching is non-sticky and

global robustness at all full-support priors—both of which are characterized by a simple

condition, Cθ = Ωθ. Finally, the gap between local and global robustness has closed

when switching is perfectly non-sticky, since both require perfect asymptotic accuracy

and full prior tightness.

Additionally, Theorems 2 and 3 suggest that a lower level of switching stickiness may

not always benefit the agent. This observation follows from the fact that lowering α

makes prior tightness (hence global robustness) harder to attain for any model, whether

correctly or incorrectly specified. Assuming identifiability, the only correctly specified

model that is globally robust when α = 1 is the true model θ∗. As α approaches 1, it

becomes likely for the agent to switch from a correctly specified model to a misspecified

alternative model due to heightened sensitivity to initial noisy information, potentially

resulting in the agent getting stuck with the misspecified model. On the other hand,

with a large α, it takes an enormous amount of evidence to convince the agent to switch
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qθ(1|a, ω) g b

ā 0.5 0.3

qθ
′
(1|a, ω) g b

ā 0.5 0.3+ϵ

qθ
∗
(1|a, ω) ω∗

ā 0.5

Table 3: Initial model θ and competing model θ′ in Example 2.

away from a misspecified initial model. Determining an optimal switching threshold

requires an analysis of Type I and Type II errors in the presence of endogenously

generated data, a task beyond the scope of this paper.

4.5 Proof idea of Theorems 2 and 3

To appreciate the importance of prior tightness, we first consider a basic scenario where

outcomes are exogenously generated, or equivalently when A consists of a single action

ā. Since the decision problem is trivial, determining whether a model persists reduces

to a purely statistical problem. Theorems 2 and 3 predict the following: with sticky

switching, a model is locally robust across all priors if and only if its predictions contain

the true outcome distribution, and it is globally robust at a given prior if and only if

the prior assigns probability weakly higher than 1/α to the true outcome distribution;

with non-sticky switching, the only locally or globally robust model is the true model.

Example 2 illustrates the ideas behind this result.

Example 2 (Exogenous data). Suppose the agent works on a single task A = {ā}
and observes the failure/success of the task, Y = {0, 1}. According to the true data-

generating process, the success rate is set at 0.5. The agent’s initial model θ asserts

that the success rate is contingent on the agent’s luck, denoted by ω ∈ Ωθ = {g, b}.
Here, g represents good luck, associated with a success rate of 0.5, and b represents bad

luck, associated with a success rate of 0.3 (see Table 3). Note that model θ is correctly

specified because it predicts the true success rate under the condition of good luck.

Model θ is globally robust if and only if the prior assigns a sufficiently high proba-

bility to good luck, i.e. πθ0(g) ≥ 1/α. To see why, suppose the agent considers the true

model θ∗ as an alternative. The Bayes factor at the beginning of period t is given by

λt =
ℓt(θ

∗)

ℓt(θ)
=

0.5t

πθ0(g)0.5
t + πθ0(b)0.3

St0.7Ft
, (8)

where St and Ft denote the number of successes and failures observed during periods

0, 1, ..., t − 1 and St + Ft = t. Since the likelihood of bad luck eventually vanishes

relative to that of good luck, λt converges to 1/πθ0(g) almost surely. As a result, if
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πθ0(g) < 1/α, the agent must eventually abandon model θ. On the other hand, when

πθ0(g) ≥ 1/α, λt is bounded above by α for any history, indicating that the agent never

switches to the competing model no matter which outcomes have been observed in the

past. Intuitively, the explanatory power of model θ is at least 1/α times as large as the

true model, so the Bayes factor will never exceed α. We can use an analogous argument

to show that θ also persists against any arbitrary model if πθ0(g) ≥ 1/α. Since none

of the above reasoning relies on assumptions about α, the conclusion applies to both

sticky and non-sticky switching.

In contrast, model θ is locally robust at all full-support priors provided that switch-

ing is sticky. To see why, assume the agent entertains a slightly more optimistic (and

thus closer to truth) competing model θ′ that predicts a success rate of 0.3+ ϵ for bad

luck. The Bayes factor is given by

ℓt(θ
′)

ℓt(θ)
=
πθ

′
0 (g)0.5

t + πθ
′

0 (b)(0.3 + ϵ)St(0.7− ϵ)Ft

πθ0(g)0.5
t + πθ0(b)0.3

St0.7Ft
. (9)

As the agent accumulates more evidence, the likelihood associated with bad luck van-

ishes as compared to that associated with good luck in both models. The Bayes factor

converges to the ratio of the prior odds of good luck, πθ
′

0 (g)/π
θ
0(g), which is bounded

above by α > 1 when the priors are sufficiently close. More importantly, the likelihoods

of θ′ and θ stay close to each other not only in the limit but also for small t given that

their predictions only differ slightly under the condition of bad luck. Therefore, when ϵ

is sufficiently small, the agent never switches to the alternative model. This argument

can be generalized to other nearby competing models to show that model θ is locally

robust irrespective of the prior when α > 1. Nevertheless, this line of reasoning breaks

down in the case of non-sticky switching. Unless model θ is the true model, we can

always construct a competing model nearby (like θ′ in the example) that eventually

outperforms the initial model, even if only marginally.

The key force driving the necessity of prior tightness for global robustness lies in the

Bayes factor rule acting akin to Occam’s Razor—it favors parsimonious models with

tight priors concentrated over accurate predictions while penalizing complex models

with diffuse priors.27 This force is present even when outcomes are exogenously gener-

ated: given the same asymptotic accuracy, a model θ with a diffuse prior may exhibit

a much poorer fit to early outcome realizations compared to a “simple and accurate”

27It is well known in the statistics literature that the Bayes factor automatically includes a penalty
for including too much structure into the model and helps prevent overfitting (Kass and Raftery,
1995).
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competing model for which the prior is concentrated around the true DGP. The bad

data fit early on leaves a lasting impact on overall model fitness, triggering a switch to

the competing model. As switching becomes stickier, the agent becomes more tolerant

of diffuse priors, granting the model more time to optimize its performance. However,

this is not necessary for local robustness. When the agent compares a model with

its local perturbation, their predictions are sufficiently similar. Sticky switching then

allows the model ample time to achieve perfect asymptotic accuracy before the agent

has to switch.

Moving on to scenarios wherein outcomes are endogenously generated by optimally

chosen actions, perfect asymptotic accuracy is achieved not only by correctly speci-

fied models but also by misspecified ones that induce at least one p-absorbing self-

confirming equilibrium. Here, an analogous prior tightness condition is that the prior

assigns a probability weakly higher than α to the DGPs that are involved in p-absorbing

SCEs, namely Cθ. Theorem 2 establishes the validity of this generalization by overcom-

ing two major complications that arise due to endogenous data. First, the parameters

in Cθ represent no longer outcome distributions but data-generating processes that

map actions to potentially distinct outcome distributions. Hence, their predictions are

endogenously determined by past outcomes via the actions chosen by the agent. As a

result, we cannot directly establish asymptotic bounds for the Bayes factor based on

the priors for arbitrary histories as in Example 2. Second, there may exist multiple

p-absorbing self-confirming equilibria, supported by distinct degenerate beliefs over Cθ.

However, at most one equilibrium can be obtained in the limit, so it is a priori unclear

whether it would suffice to have concentration over the entire set, or it is necessary

that the prior must concentrate around a unique parameter in Cθ.

The proof of Theorem 2 shows that πθ0(C
θ) ≥ 1/α is sufficient for global robustness,

overcoming the endogenous-data complications by tracking sequences of actions and

realized outcomes simultaneously. Unlike in the case of exogenous data, each parameter

in Cθ accurately predicts the true outcome distribution only when the optimizing agent

plays the corresponding self-confirming equilibrium actions. When the agent indeed

plays SCE actions, we can provide an upper bound for the probability of switching to

the competing model using the maximal inequality, and the bound is strictly below

1 provided that the prior satisfies πθ0(C
θ) ≥ 1/α. The no-trap conditions come in

handy because they ensure that we can construct a sequence of outcomes that induce

the agent to eventually play according to any SCE and reach a posterior close to the

corresponding equilibrium belief within finite time while keeping the Bayes factor under

the switching threshold during this process. The existence of multiple SCEs further
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broadens the set of such histories and thus relaxes the prior tightness requirement.

The proof for the necessity of πθ0(C
θ) ≥ 1/α is also more involved than before.

Recall that in Example 2 I simply take the true model as the competing model and

show that the initial model cannot persist unless its prior assigns sufficiently high

probability to the true outcome distribution. Here, instead of constructing a “simple

and accurate” competing model (e.g. the true model), we construct an “extreme and

misleading” competing model that consists of the SCE-inducing DGPs contained in

Cθ and the true DGP. When its prior assigns a tiny probability ϵ to the true DGP

and allocate the remaining probabilities proportional to πθ0, this competing model is a

almost stripped down version of the initial model θ, hence more extreme and misleading.

Since the competing model is correctly specified, on the paths where the model choice

eventually converges to the initial model, the agent must end up playing a SCE and her

belief within θ must end up concentrating on Cθ. Thus, the Bayes factor, capturing

the explanatory power of model θ′ and θ, can be asymptotically bounded below by

1/πθ0(C
θ) when ϵ is sufficiently small. When the prior tightness condition fails, the

Bayes factor must eventually surpass α forever, leading to a contradiction.

5 Applications

In this section, I present two applications to demonstrate how the main results un-

cover new insights about robust misspecified models. The first application revisits the

comparison between over- and underconfidence in more general environments. The sec-

ond application illustrates that simple misspecified worldviews may outperform more

complex correct worldviews in a political context.

5.1 Overconfidence and Underconfidence

A wealth of evidence in psychology and economics suggests that overconfidence is more

prevalent than underconfidence. In this application, I compare the robustness proper-

ties of over- and underconfidence in broadly defined environments with sticky switching.

I restrict attention to the prior-free local robustness notion since the interesting dif-

ference between over- and underconfidence only concerns the induced equilibria rather

than the prior, but similar conclusions can be drawn for global robustness. The results

demonstrate that, under natural assumptions, any degree of overconfidence is locally

robust, whereas underconfidence is not locally robust except on a union of unconnected

intervals. This result breaks the symmetry between over- and underconfidence and pro-
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vides a novel mechanism rooted in the learning environment itself as to why we might

expect one bias to be more robust than the other.

Consider an agent selecting an action at from a finite set A ⊂ [a, a] in each period.

The agent receives and observes a flow payoff u(at, yt) = g(at, b
∗, ω∗) + ηt, where func-

tion g is twice continuously differentiable, strictly increasing in b∗ and ω∗, b∗ ∈ [b, b]

represents the agent’s ability, and ω∗ ∈ [ω, ω] captures an environment fundamental

such as market demand or organizational quality. The noise term ηt follows a known

zero-mean distribution. I assume that g is strictly concave in a over [a, a] (gaa < 0),

and that the action and the fundamental are either always strict complements or al-

ways strict substitutes. Formally, either gaω < 0 or gaω > 0 for all a ∈ [a, a], b ∈ [b, b],

ω ∈ [ω, ω]. Building on Heidhues et al. (2018) and Ba and Gindin (2022), I assume that

the impact of one’s ability on optimal effort differs in direction from the impact of the

fundamental. Specifically, sgn(gab) ̸= sgn(gaω). This assumption plays an important

role in determining the robustness properties of over- and underconfidence and will be

discussed at the end.

I study misspecified models that assign probability 1 to some b̂ ∈ [b, b], deviating

from its correct value b∗. The agent is dogmatically overconfident about his ability when

b̂ > b∗ and underconfident when b̂ < b∗. To avoid trivial cases of non-robustness, I focus

on models whose parameter spaces are complete: if the model assigns probability 1 to

b̂, then for any a ∈ A, there exists Ωθ(a) ∈ Ωθ such that g(a, b̂,Ωθ(a)) = g(a, b∗, ω∗). In

other words, the agent can always identify a fundamental value that perfectly explains

the observed data for any fixed a. Let ΘM ⊂ Θ denote the set of all models satisfying

the above conditions. Proposition 1 shows that while any level of overconfidence is

locally robust, underconfidence can only be locally robust on unconnected intervals.

Proposition 1. Consider any model θ ∈ ΘM with b̂ ∈ [b, b] but b̂ ̸= b∗.

(i) Overconfidence: model θ is locally robust if b̂ > b∗.

(ii) Underconfidence: there exists a strictly decreasing sequence βN < ... < β1 < β0 =

b∗ such that, model θ is locally robust if b̂ ∈ (β2k+1, β2k) for some k ∈ N and not

locally robust if b̂ ∈ (β2k, β2k−1) for some k ∈ N+.

Proposition 1 holds because any model in ΘM induces at least one p-absorbing SCE

when b̂ > b∗ but this is not necessarily the case when b̂ < b∗. The key determinant

in the existence of a p-absorbing SCE is the direction of belief reinforcement. To

illustrate, suppose the action and the fundamental are strict complements, gaω > 0.

In this case, higher degenerate beliefs about the fundamental motivate higher actions,
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Figure 2: An example illustration of the model-induced equilibria when a and ω are
strict complements. In both sub-figures, the black step curve represents the agent’s
myopically optimal action as a correspondence of the fundamental, the gray curve
represents the agent’s inferred fundamental Ωθ(a) as a function of the action, and the
black dots represent potential long-run steady states. In the left figure, there are four
self-confirming equilibria and three of them are quasi-strict (except a3); in the right
figure, there is no self-confirming equilibrium.

i.e. maxAθ(δω′) ≤ minAθ(δω′′) for all ω′′ > ω′. When the agent is overconfident

with b̂ > b∗, higher actions lead to even higher beliefs about the fundamental, i.e.

Ωθ(a′) < Ωθ(a′′) for all a′ < a′′, positively reinforcing the distortion. This relationship

can be observed from the equation below,

g(a, b̂,Ωθ(a)) = g(a, b∗, ω∗). (10)

At a higher action, the return to fundamental ω is higher because gaω > 0 and the return

to ability b is weakly lower because, by assumption, sgn(gab) ̸= sgn(gaω). Therefore,

the positive gap between the true fundamental ω∗ and the inferred fundamental Ωθ(a)

should be smaller such that expectations meet the reality, implying that Ωθ(a) is larger.

In contrast, when the agent is underconfident with b̂ < b∗, higher actions in turn lead

to lower beliefs, i.e. Ωθ(a′) > Ωθ(a′′), negatively reinforcing the distortion.

As shown in Fig. 2, the optimal action is an increasing step curve of the belief about

the fundamental. Meanwhile, the inferred fundamental is a strictly increasing function

of the action in cases of overconfidence and a strictly decreasing function in cases of

underconfidence. With overconfidence, the optimal action curve and the inference curve

must intersect at least once at a flat segment of the optimal action curve. This together

with the assumption of a complete parameter space ensures the existence of at least one

p-absorbing SCE. In contrast, with underconfidence, the optimal action curve and the
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inference curve may intersect at the vertical segment of the optimal action curve. This

point of intersection corresponds to a steady state where the agent mixes two actions

with some fixed frequency, and his belief eventually converges to the inferred value of

the fundamental that best explains the data at the mixed action. Notably, however,

this steady state is not a self-confirming equilibrium because the agent’s belief about

the fundamental cannot perfectly explain the data generated by two distinct actions.28

When the action and the fundamental are strict substitutes (gaω < 0), the orientation

of both the optimal action curve and the inferred fundamental curve is inverted, so

Proposition 1 still applies.

Remark. While the condition sgn(gab) ̸= sgn(gaω) is sufficient for Proposition 1,

it is not necessary. The result may still hold in cases where sgn(gab) = sgn(gaω),

but verifying that overconfidence is more robust than underconfidence in this scenario

requires a case-by-case analysis of the direction of belief reinforcement, i.e. whether

the inferred fundamental function is co-monotone with the optimal action function.29

5.2 Media Bias, Extremism, and Polarization

In this application, I consider a stylized model of media consumption and demonstrate

how misconceptions about media bias (Groseclose and Milyo, 2005) can lead to stable

and robust polarization in political views despite no ex ante partisan bias.

The agent has access to three media outlets and in each period she chooses one to

consume, A = {aL, aM , aR}. The media outlets are indexed by their political leanings,

left-wing, neutral, or right-wing. Each media outlet delivers two types of news, Y =

{l, r}, where l represents good stories for the leftists and r represents good stories for

the rightists. The unknown state of the world ω ∈ Ω = {ωL, ωM , ωR} governs the

fraction of l and r stories happened in the real world and it remains fixed throughout

the life of the agent. In particular, 60% of the stories are l stories (r stories) in state

28This steady state corresponds to a Berk-Nash equilibrium, where the equilibrium belief about
the fundamental minimizes the weighted average Kullback-Leibler divergence of the true outcome
distribution from the model prediction. A self-confirming equilibrium is a special case of a Berk-Nash
equilibrium with the minimized KL divergence equal to 0.

29For example, suppose the output g takes the form of h(a)b+aω− c(a), where h and c are strictly

increasing. If h(a) = ka for some k > 0, then Ωθ(a) is independent of a for any b̂ ̸= b, implying that
both over- and underconfidence are locally robust. If h(a) = kan for some k > 0 and n < 1, then it

can be verified from Eq. (10) that Ωθ(a) is co-monotone with the optimal action function when b̂ > b,

and not co-monotone if b̂ < b. In this case, Proposition 1 still applies. In contrast, if h(a) = kan for
some k > 0 and n > 1, then the opposite of Proposition 1 holds, i.e. underconfidence is more robust
than overconfidence.
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qθ(l|a, ω) ωL ωM ωR

aL 0.7 0.6 0.5

aM 0.6 0.5 0.4

aR 0.5 0.4 0.3

qθ̂(l|a, ω) ωL ωR

aL 0.6 0.5

aM 0.5 0.5

aR 0.5 0.4

qθ
∗
(l|a, ω) ωM

aL 0.6

aM 0.5

aR 0.4

Table 4: The left panel summarizes the true fraction of l stories reported by each media
outlet in each state of the world. It is also a description of a correctly specified model θ.
The middle panel describes the predictions of a misspecified model θ̂. The right panel
describes the predictions of the true model θ∗, which also captures the true fraction of
l stories in the true state ωM .

ωL (ωR), while an equal share of l and r stories happen in state ωM . The three media

outlets differ in their ways of news reporting: in each state of the world, media aM

truthfully reports the stories without bias, media aL selectively reports l more than

media aM , and media aR selectively reports r more than media aM . The left panel

of Table 4 summarizes the true fraction of l stories reported by the media in different

states. Assume the world is in state M , where the true fractions of l stories reported

by the three media are given by (0.6, 0.5, 0.4).

In this exercise, we focus attention on the comparison between two different models

θ and θ̂ that I describe in Table 4. Model θ is correctly specified: a θ-modeler realizes

that ωM is a possible state of the world and are fully aware of the bias of both the

left-wing and the right-wing media outlets. By contrast, model θ̂ is misspecified in two

aspects. First, θ̂ features extremism because it only recognizes the possibility of the

extreme states ωL and ωR. Second, θ̂ features naivety about media bias: a θ̂-modeler

underestimates the selective reporting bias of the left-wing aL and right-wing media aR,

and also underestimates the informativeness of the neutral media. As a result, when a

θ̂-modeler subscribes to the left-wing media and finds that 60% of the stories are good

stories for leftists, she does not interpret it as evidence for the middle state ωM (which

does not exist in her extreme worldview), but treats it as evidence for the left state

ωL; a similar logic applies to the right-wing media. She also mistakenly thinks that

the reporting of the neutral media is totally uninformative about the state.

To highlight the core mechanism, I abstract away from specifying the payoff struc-

ture but only outline the minimal assumptions that allow us to apply the characteri-

zation theorems. The choices of the agent described in Assumption 3 can be justified

as the result of maximizing the sum of emotional and informational value from news

consumption (see Appendix C for a micro-foundation).

36



Assumption 3. The following are true:

(i) Under model θ, aM is strictly optimal at belief δωM .

(ii) Under model θ̂, aL and aR are strictly optimal at belief δωL and δωR, respectively.

The assumption on the model predictions and Assumption 3 together imply that aM

is the unique SCE under θ while aL and aR are SCEs with distinct supporting beliefs

under θ; in addition, all of them are strict. In equilibrium, with the correctly specified

model θ, the agent infers the true state and subscribes to the neutral media. With the

misspecified model θ̂, however, the agent develops partisan bias and only subscribes to

the media biased towards her political belief.

Since both models θ and θ̂ admit at least one p-absorbing SCE, Theorem 1 tells us

that both models are globally robust at some prior. However, interestingly, Theorem 2

implies that model θ̂ is globally robust in a more robust way than the correctly specified

θ. In particular, model θ is globally robust only when the associated prior assigns high

enough probability to the true state ωM , while model θ̂ is globally robust at all priors.

The latter result stems from the fact that all parameter values in model θ̂ are consistent,

i.e. C θ̂ = {ωL, ωR} = Ωθ̂. These results are summarized in Proposition 2.

Proposition 2. Fix any α ≥ 1. Model θ is globally robust at prior πθ0 if and only if

πθ0(ω
M) ≥ 1/α, while model θ̂ is globally robust at all priors.

To illustrate, suppose for example the agent entertains the true model θ∗ as the

competing model. In the long term, the average predictions of the correct but flexible

model θ are not as accurate as the true model because part of θ’s predictions (associated

with ωL and ωR) are incorrect. By contrast, it is possible that the misspecified model

θ̂ fits the data better than the true model on average. For example, this is the case if,

for the first N periods, the agent only comes across r stories when reading left-wing

media and only l stories when reading right-wing media. Intuitively, model θ̂ allows the

agent to flexibly interpret the stories as indicative evidence for another state instead

of evidence against the current model. Since both models have perfect asymptotic

accuracy, the better fit of the initial data generates a persisting advantage for θ̂ in

comparison with θ∗.

Proposition 2 characterizes the robustness properties of θ and θ̂ separately with the

implicit assumption that they are the initial model choice of a switcher. Now suppose

the agent originally adopts θ and entertains θ̂ as the competing model, will she abandon

θ in favor of θ̂? The answer is positive: as shown in Proposition 3, θ̂ replaces θ with

positive probability if the switching threshold is sufficiently low.
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Proposition 3. Fix any full-support priors πθ0, π
θ̂
0 and any α < 1/πθ0(ω

M). Given the

switcher’s problem (θ, θ̂, πθ0, π
θ̂
0), mt eventually equals θ̂ with positive probability.

In summary, this application generates three novel insights about news consumption

and political beliefs. First, extremism and naivety about media bias go hand in hand

and their persistence is robust against arbitrary competing models. Second, individuals

may abandon their correct models and switch to incorrect alternatives because of their

extremeness/simplicity. Third, even though the extreme and naive model has no built-

in political bias, individuals who hold such a model gradually develop a strong partisan

bias and restrict themselves to a single biased media outlet over time. The direction

of the partisan bias is random and path-dependent, potentially leading to long-term

political polarization.

6 Extensions

6.1 Multiple Competing Models

The model-switching framework can be easily extended to accommodate more than one

competing model. Let Θ′ ⊆ Θ denote the finite set of competing models that the agent

considers, and Θ† := Θ′ ∪ {θ} denote the set of all models considered including the

initial model. Throughout, I maintain the assumption that Θ′ is finite and contains

at most K ≥ 1 distinct models. At the beginning of period t, the agent compares

her current model against all alternatives and switches to the most plausible one if

fits the data sufficiently better. Specifically, the agent calculates the Bayes factors

between models in Θ† and the model she used in the last period, λt := (λθ
′
t )θ′∈Θ† , where

λθ
′
t = ℓt(θ

′)/ℓt(mt−1). The agent makes a switch if maxθ′∈Θ† λθ
′
t > α and switches to

the model with the highest Bayes factor.30 Model θ is globally robust at prior πθ0 if it

persists against every Θ′ ⊆ Θ of size no larger than K at πθ0 and every vector of priors

πΘ′
0 . The definition of local robustness is modified analogously.

An immediate consequence of introducing multiple competing models is potential

overfitting. As the number of competing models grows, it becomes more likely and

sometimes inevitable that the best-fitting model outperforms the initial model. In

fact, when the number of competing models K exceeds 1+α, even the true model may

30With this modified switching rule, persistence against Θ′ is not equivalent to persistence against
each individual model in Θ′, and neither implies the other. For examples, see Examples 6 and 7.
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fail to be globally robust.31 This observation relates to the finding of Schwartzstein

and Sunderam (2021) that a decision-maker can be induced to switch away from the

true model when a persuader is permitted to propose an alternative model tailored to

the realized data. In contrast, my results suggest that the persuader can achieve the

same objective even if they are required to propose models before the data is realized,

and the data is infinite, provided that they can present many competing models.

A natural remedy for overfitting is to make switching sticky enough so that the agent

becomes less responsive to early outcome realizations and thus harder to manipulate.

Indeed, Theorem 4 shows that if α > K, perfect asymptotic accuracy remains a suffi-

cient and necessary condition for local and global robustness provided prior flexibility.

Therefore, misspecified models can still be globally robust in the presence of a large

number of competing models as long as switching is sufficiently sticky.

Theorem 4. Suppose the agent considers at most K competing models and α > K.

Model θ ∈ Θ is locally and globally robust for at least one prior if and only if there

exists a p-absorbing SCE under θ, i.e. Cθ ̸= ∅.

6.2 Non-myopic Agent

Our main framework focuses on a myopic agent who maximizes her flow payoff under

the current model. While this assumption simplifies the characterization of model

persistence, it rules out any experimentation motives, both within and across models.

To relax it, let’s first assume that the agent is non-myopic within each model but

maintain that she is myopic across models. This is plausible when the agent focuses

on optimizing her decision-making with the model at hand.32 Formally, when choosing

an action, the agent maximizes her expected discounted sum of payoffs assuming that

she keeps her current model mt in the future. An optimal policy f θ : ∆Ωθ → A is a

selection from the correspondence Aθ : ∆Ωθ ⇒ A, which solves the following dynamic

31I construct a scenario where, with probability 1, the agent switches away from the true model
to one of the misspecified alternative models and stops switching thereafter with probability 1 (see
Example 8).

32For instance, consider an applied data scientist who uses a single model to guide data collection
and make policy recommendations. While he is aware of potential misspecification, he chooses to focus
the valuable resources on the estimation of her current model instead of additional experiments to find
out the best model. However, he may indeed switch to a different model if the data at hand happens
to suggest its superiority. This assumption is also natural in organizations where decision-making and
model validation are handled by separate teams. For example, the policy team of a central bank may
be responsible for choosing policies based on model predictions, while the research team may focus on
exploring and comparing the performance of mainstream macroeconomic models.
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programming problem,

U θ
(
πθt
)
= max

a∈A

∑
ω∈Ωθ

πθt (ω)

∫
y∈Y

[
u (a, y) + δU θ

(
Bθ
(
a, y, πθt

))]
qθ (y|a, ω) v (dy) .

If we relax the myopicity assumption this way, Theorem 1 and Theorem 2 go through

without changes. This may appear surprising at first because experimentation motives

should make it harder to sustain a self-confirming equilibrium and hence a robust

model. This intuition is merely partially correct—as the agent becomes more patient,

p-absorbingness is harder to achieve. However, the theorems establish the equivalence

relationship between the existence of p-absorbing equilibria and the models’ robustness

properties, so whether p-absorbingness can be achieved by the model is irrelevant to the

statement. In Appendix B.9, I provide stronger sufficient conditions for p-absorbingness

such that variants of Corollary 1 continue to hold.33

Alternatively, we may assume the agent is forward-looking both within and across

models. If the agent anticipates future model switches, she may intentionally take

actions that allow her to distinguish different models, even if her current model pre-

dicts a different optimal action. Characterizing robust models in this environment is

significantly more challenging and beyond the scope of this paper.

6.3 Alternative Definitions of Persistence

Our definition of persistence in Section 3 requires that if a switcher initially adopts this

model, she eventually settles down with it with positive probability. This concept has

a natural interpretation and can be used to predict whether a particular bias is likely

to stably exist among a large population. By relaxing or strengthening different parts

of this definition, we can obtain a couple of variants that are also worth exploring.

Almost sure eventual adoption. The first natural extension is to strengthen persis-

tence by requiring that the model is eventually adopted with probability 1. That is, any

such model is guaranteed to win out in the competition. Unfortunately, almost-sure

persistence makes global and local robustness impossible. In fact, given any model θ

(including the true model θ∗), we can easily construct a nearby competing model θ′

such that the competing model is eventually adopted with positive probability. The

idea is that the agent can draw a sequence of outcome realizations that can be better

explained by the competing model, and once a switch happens, the agent does not feel

33In particular, any uniformly quasi-strict SCE is p-absorbing.
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compelled to switch back since the predictions of the two models are close to each other

in the short term and identical in the limit. In sum, almost sure eventual adoption is

too restrictive to be a useful concept.34

No switch. The current definition of persistence allows for back-and-forth switching

before the agent eventually settles down with the model. A more conservative definition

would require the agent to adopt the same model throughout and never switch. It turns

out that the main results continue to hold with this conservative definition. Intuitively,

for the results to change with the more conservative definition, it must be that the

long-term persistence of some models necessarily comes with back-and-forth switching

during the learning process. In Theorem 1, one can flexibly choose the prior sufficiently

concentrated on a p-absorbing SCE such that the agent never has to switch away from

an asymptotically accurate model. In Theorem 2, the no-trap assumption ensures that

the agent can draw outcomes that induce her to get close to p-absorbing equilibria

from any qualified full-supporting prior without the need to temporarily switch to the

competing model.35

7 Concluding Remarks

This paper proposes a new theoretical framework to study the persistence of misspec-

ified models when decision-makers are aware of potential model misspecification. In

this framework, sticky switching is incorporated into the standard model of individual

active learning. I explore two notions of model robustness—local and global—and use

them to derive novel insights about model persistence. Both notions of robustness can

be characterized based on two properties: asymptotic accuracy and prior tightness.

The idea that the agent has trouble realizing that their belief or subjective model is

wrong in self-confirming equilibria has been floating around in the existing literature

for a long time. Instead of assuming that the agent starts outright from an equilibrium,

my framework incorporates full-fledged model switching dynamics into active learning

34To do this, let us construct θ′ such that it contains all DGPs in θ and one additional DGP
that differs from any other DGPs for all actions in θ. That is, we have Ωθ′

= Ωθ ∪ {ω̂}, where
qθ

′
(·|a, ω) = qθ(a|·, ω) and qθ

′
(·|a, ω̂) ̸= qθ(·|a, ω) for all ω ∈ Ωθ and all actions a ∈ A. In addition, let

the prior πθ
0 be proportional to πθ′

0 for the shared parameters. Then the Bayes factor λt is bounded
below by πθ′

0 (Ωθ). Note that since ω̂ predicts differently from model θ, it is always a positive-probability
event that the agent finds model θ′ sufficiently more compelling and makes a switch. But then the
agent never switches back if the lower bound of the Bayes factor, πθ′

0 (Ωθ), is higher than 1/α. This
can be achieved if πθ′

0 (Ωθ) is sufficiently close to 1.
35When there are traps in the model, however, a temporary switch to the competing model can be

instrumental when such switches happen to the only way that keeps the agent away from the traps.
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processes. The characterization highlights the importance of this consideration. Ro-

bustness not only requires the existence of a self-confirming equilibrium but also needs

it to be p-absorbing, which connects the notion of model persistence with the stability

of equilibria. Furthermore, global robustness requires high prior tightness around the

set of p-absorbsing self-confirming equilibria. This finding provides a theoretical justi-

fication for the empirical observation that simple narratives and entrenched worldviews

tend to be more persistent.

The model-switching framework has great application value. My characterization

of robust models, presented as simple criteria easily verifiable from the primitives,

provides a learning foundation for various forms of misspecified models, some of which

are already studied in misspecified learning literature. It can also be used to predict

the robust of given behavioral biases in specific contexts with varying initial conditions,

which can be useful for guiding empirical work on behavioral economics and relevant

policy making.

Within this general framework of model switching, there are many other interesting

questions to pursue. For example, persistence requires a positive chance of eventual

adoption, but this concept is silent about how far this probability is away from 0. New

insights may emerge from studying how this probability is determined by key primitives

of the model, such as whether it is correctly specified or misspecified, and features

of the learning environment, such as the switching stickiness. Another potentially

fruitful direction is to study when a decision-maker, instead of remaining under her

initial model, switches to a competing model or oscillates between multiple models

perpetually.
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A Auxiliary Definitions and Lemmas

A.1 Underlying Probability Space

The underlying probability space (Y,F ,P) is constructed as follows. The sample space

is Y := (Y∞)A, each element of which consists of infinite sequences of outcome real-

izations (ya,0, ya,1, ...) for all actions a ∈ A, where ya,t denotes the outcome when the

agent takes a in period t. Let us denote by P the probability measure over Y in-

duced by independent draws from q∗ and denote by F the product sigma-algebra. Let

h := (at, yt)
∞
t=0 denote an infinite history and H := (A× Y)∞ be the set of infinite his-

tories. Combined with the switching threshold α, the switcher’s problem (θ, θ′, πθ0, π
θ′
0 ),

and policies (f θ, f θ
′
), P induces a probability measure over H when the agent is a

switcher, denoted by PS. Meanwhile, the measure P, prior πθ0, and policy f θ induce

a different probability measure over H for a θ-modeler who uses the same prior and

policy, denoted by PD. All probabilistic statements about a switcher are made with

respect to PS and all those about a θ-modeler are with respect to PD, unless indicated
otherwise.

A.2 Useful Lemmas

Lemma 3. Consider any switcher’s problem (θ, θ′, πθ0, π
θ′
0 ) in which θ, θ′ ∈ Θ and θ′

is correctly specified. The ratio ℓt(θ)/ℓt(θ
′) a.s. converges to a non-negative random

variable with finite expectation.

Proof. Let κt = ℓt(θ)/ℓt(θ
′), then κ0 = 1 and κt ≥ 0,∀t. I now construct the probability

space in which κt is a martingale. Given prior πθ
′

0 , denote by Pθ
′
S the probability measure

over the set of histories H as implied by model θ′. Formally, for any Ĥ ⊆ H, we have

Pθ′S
(
Ĥ
)

=
∑

ω∈Ωθ′ πθ
′

0 (ω)Pθ
′,ω
S

(
Ĥ
)
, where Pθ

′,ω
S is the probability measure over H

if the true DGP is as described by θ′ and ω and the agent is a switcher. Take the
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conditional expectation of κt with respect to Pθ′S , then we have

EPθ′
S (κt|ht−1)

= EPθ′
S

[ ∑
ω∈Ωθ qθ (yt−1|at−1, ω) π

θ
t−1 (ω)∑

ω′∈Ωθ′ qθ
′ (yt−1|at−1, ω′) πθ

′
t−1 (ω

′)
κt−1|ht−1

]
= κt−1

∑
ω̃∈Ωθ′

πθ
′

t−1 (ω̃)

[∫
Y

∑
ω∈Ωθ qθ (yt−1|at−1, ω) π

θ
t−1 (ω)∑

ω′∈Ωθ′ qθ
′ (yt−1|at−1, ω′) πθ

′
t−1 (ω

′)
qθ

′
(yt−1|at−1, ω̃) ν (dyt−1)

]

= κt−1

∫
Y

 ∑
ω∈Ωθ qθ (yt−1|at−1, ω) π

θ
t−1 (ω)∑

ω′∈Ωθ′ qθ
′ (yt−1|at−1, ω′) πθ

′
t−1 (ω

′)

∑
ω̃∈Ωθ′

qθ
′
(yt−1|at−1, ω̃) π

θ′

t−1 (ω̃)

 ν (dyt−1)

= κt−1

∫
Y

[∑
ω∈Ωθ

qθ (yt−1|at−1, ω) π
θ
t−1 (ω)

]
ν (dyt−1)

= κt−1

∑
ω∈Ωθ

[∫
Y
qθ (yt−1|at−1, ω) ν (dyt−1)

]
πθt−1 (ω) = κt−1.

Hence, κt is a martingale w.r.t. Pθ′S . Since κt is non-negative, the Martingale Conver-

gence Theorem implies that κt converges to κ almost surely w.r.t. Pθ′S , and EPθ′
S κ ≤

κ0 = 1. Since θ′ is correctly specified, there exists a parameter ω∗ ∈ Ωθ′ such that

q∗ (·|a) ≡ qθ
′
(·|a, ω∗) ,∀a ∈ A. It then follows from πθ

′
0 (ω∗) > 0 that κt also converges

to κ almost surely w.r.t. Pθ
′,ω∗

S , which is the same measure as PS. Moreover, Eκ < ∞
because otherwise it contradicts EPθ′

S κ ≤ 1.

Lemma 4. Suppose θ ∈ Θ persists against a correctly specified model θ′ ∈ Θ at some

full-support priors πθ0, π
θ′
0 . Then on paths where mt eventually equals θ, we have λt

a.s.−−→
λ∞ ≤ α, πθ

′
t

a.s.−−→ πθ
′

∞, and πθt
a.s.−−→ πθ∞.

Proof. It immediately follows from Lemma 3 that ℓt(θ
′)/ℓt(θ)

a.s.−−→ ι ≤ α on paths where

mt converges to θ. I now show that πθt and πθ
′
t also converge almost surely. Given any

ω ∈ Ωθ, we can write

πθt (ω)

πθ0 (ω)
=

∏t−1
τ=0 q

θ (yτ |aτ , ω)∑
ω′∈Ωθ

∏t−1
τ=0 q

θ (yτ |aτ , ω′) πθ0 (ω
′)

=
ℓt(θ

′)

ℓt(θ)
·

∏t−1
τ=0 q

θ (yτ |aτ , ω)∑
ω′′∈Ωθ′

∏t−1
τ=0 q

θ′ (yτ |aτ , ω′′) πθ
′

0 (ω′′)

:=
ℓt(θ

′)

ℓt(θ)
· ℓt(θ, ω)
ℓt(θ′)

,
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where the second term ℓt(θ, ω)/ℓt(θ
′) can be seen as the likelihood ratio of a model

that consists of a single parameter ω and the competing model θ′. By Lemma 3,

ℓt(θ, ω)/ℓt(θ
′) a.s. converges to a random variable with finite expectation. Consider the

paths on which mt converges to θ. On these paths, both ℓt(θ
′)/ℓt(θ) and ℓt(θ, ω)/ℓt(θ

′)

converges a.s., which implies that πθt (ω) a.s. converges to a random variable with finite

expectation as well. Since this is true for all ω ∈ Ωθ, πθt a.s. converges to some limit

πθ∞ on those paths. Analogously, for any ω′ ∈ Ωθ′ , we can write

πθ
′
t (ω′)

πθ
′

0 (ω′)
=
ℓt(θ

′, ω′)

ℓt(θ′)
,

which, again by Lemma 3, converges almost surely.

Lemma 5. Fix any θ, θ′ ∈ Θ, ω ∈ Ωθ, ω′ ∈ Ωθ′ and any sequence of actions (a1, a2, ...).

For each infinite history h ∈ (A× Y)∞ that is generated according to (a1, a2, ...) by the

true DGP, let

ξt (h) = ln
qθ (yt|at, ω)
qθ′ (yt|at, ω′)

− E
(
ln

qθ (yt|at, ω)
qθ′ (yt|at, ω′)

|ht
)
.

Then for any fixed t0 ≥ 1,

lim
t→∞

(t− t0 + 1)−1
t∑

τ=t0

ξτ (h) = 0, a.s..

Proof. Note that ξt (h) is a martingale difference process since E (ξt (h) |ht) = 0. So

for any t0, ξ
t
t0
(h) :=

∑t
τ=t0

(t− τ + 1)−1 ξτ (h) is also a martingale difference process.

To use the Martingale Convergence Theorem, I now show that supt E
((
ξtt0
)2)

< ∞.
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Notice that

E
((
ξtt0
)2)

=E

( t∑
τ=t0

(t− τ + 1)−1 ξτ (h)

)2


≤
t∑

τ=t0

(t− τ + 1)−2 E
[
(ξτ (h))

2]
≤

t∑
τ=t0

(t− τ + 1)−2 E

[(
ln

qθ (yt|at, ω)
qθ′ (yt|at, ω′)

)2
]

≤2
t∑

τ=t0

(t− τ + 1)−2 E

[(
ln

q∗ (yt|at)
qθ (yt|at, ω)

)2

+

(
ln

q∗ (yt|at)
qθ′ (yt|at, ω′)

)2
]

≤4
t∑

τ=t0

(t− τ + 1)−2max
a

E
[
(ra (yt))

2] <∞,

where the first inequality follows from the fact that, for any τ ′ > τ ≥ t0, E (ξτ (h) ξτ ′ (h)) =

E (E (ξτ ′ (h) |hτ ) ξτ (h)) = 0 and the last inequality follows from Assumption 2. Hence,

the Martingale Convergence Theorem implies that ξtt0 converges to a random variable

ξ∞t0 almost surely with E
((
ξ∞t0
)2)

<∞.

Since ξ∞t0 = limt→∞
∑t

τ=t0
(t− τ + 1)−1 ξτ (h) is finite a.s., it follows from the Kro-

necker Lemma that

lim
t→∞

(t− t0 + 1)−1
t∑

τ=t0

ξτ (h) = 0, a.s..

Lemma 6. Suppose the agent maximizes the discounted sum of payoffs under her

current model with discount factor δ. For any θ ∈ Θ, the optimal action correspondence

Aθ : ∆Ωθ ⇒ A is upper hemicontinuous in both the belief π and the discount factor δ.

Proof. This is a standard result directly following from Blackwell (1965) and Maitra

(1968).

Lemma 7. Take any model θ ∈ Θ and any ω ∈ Ωθ. There exists γ : (0, 1) → (0, 1)

such that given any set Y ⊂ Y such that Qθ(Y |a, ω) > γ with γ ∈ (0, 1), we have

Q∗(Y |a) > γ(γ) and limγ→1 γ(γ) = 1.

Proof. If there does not exist γ : (0, 1) → (0, 1) such that the statement holds, then

there exists γ < 1 such that for any η ∈ (0, 1), there exists γ > η and Y ⊆ Y such that
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Qθ(Y |a, ω) > γ and yet Q∗(Y |a) < γ. Let {ηn} be a strictly increase sequence and

limn→∞ ηn = 1. Then for each n, we can find a set Y̌n ⊆ Y such thatQθ(Yn|a, ω) < 1−ηn
and Q∗(Yn|a) > 1− γ. Since 0 ≥ limn→∞Qθ(Y̌n|a, ω) and qθ(·|a, ω) is positive, it must

be that limn→∞ ν(Y̌n) = 0. Since Q∗ is absolutely continuous w.r.t. ν, it follows that

limn→∞Q∗(Yn|a) = 0 which is a contradiction.

Lemma 8. Fix model θ ∈ Θ and ω ∈ Ωθ. For any r > 0 and γ < 1, there exists

ϵ > 0 such that, if model θ′ ∈ Θ and ω′ ∈ Ωθ′ satisfy d(Qθ,ω, Qθ′,ω′
) ≤ ϵ, then letting

Ya,r := {y ∈ Y : qθ
′
(y|a, ω′) ≤ (1 + r)qθ(y|a, ω)} we have Q∗(Ya,r|a) > γ for any a ∈ A.

Proof. We first show that the statement holds if we replace “Q∗(Ya,r|a) > γ” with

“Qθ(Ya,r|a, ω) > γ”. Suppose the statement does not hold for some given r > 0 and

γ < 1 for contradiction. Then for any ϵ > 0 we can find a model θ′ and ω′ satisfying

d(Qθ,ω, Qθ′,ω′
) ≤ ϵ such that Qθ(Ya,r|a, ω) ≤ γ for some a ∈ A. Note that this implies

Qθ(Y \ Ya,r|a, ω) ≥ 1− γ. Note that

Qθ′(Y \ Ya,r|a, ω′) =

∫
Y\Ya,r

qθ
′
(y|a, ω′)ν(dy)

>

∫
Y\Ya,r

(1 + r)qθ(y|a, ω)ν(dy)

≥ Qθ(Y \ Ya,r|a, ω) + r(1− γ)

where the first inequality follows from the fact that y ∈ Y \Ya,r and the second follows

from Qθ(Y \ Ya,r|a, ω) ≥ 1− γ.

On the other hand, since d(Qθ,ω, Qθ′,ω′
) ≤ ϵ, we know that for all Y ⊆ Y , Qθ′(Y |a, ω′) ≤

Qθ(Bϵ(Y )|a, ω) + ϵ. Let Y = Y \ Ya,r, then

Qθ′(Y \ Ya,r|a, ω′) ≤ Qθ(Bϵ(Y \ Ya,r)|a, ω) + ϵ.

However, when ϵ is sufficiently small, since qθ is continuous, the right-hand side of the

above inequality must be smaller than Qθ(Y\Ya,r|a, ω)+r(1−γ). Since this contradicts
the previous inequality, we must have Qθ(Ya,r|a, ω) > γ. Furthermore, by Lemma 7, we

can choose ϵ sufficiently small and η sufficiently close to 1 such that Qθ(Ya,r|a, ω) > η

and Q∗(Ya,r|a) > γ.
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B Proofs of Main Results

Unless otherwise indicated, I prove all results under the assumption that the agent may

be non-myopic within each model but is myopic across models (see Section 6.2). This

includes the special case where the agent is myopic both within and across models.

For any set of finite probability distributions Z over sample space S, I use Bϵ(Z) to

denote the set of probability distributions whose minimum distance from any element

in Z is smaller than ϵ, i.e. Bϵ(Z) = {z ∈ ∆S : minz′∈Z dP (z, z
′) < ϵ}, where dP

represents the usual Prokhorov metric over ∆S.

B.1 Proof of Lemma 1

I show below that when the agent is myopic, any quasi-strict SCE satisfies a stability

property stronger than p-absorbingness, which implies Lemma 1.

Lemma 9. Suppose the agent is myopic and σ is a quasi-strict SCE with supporting

belief π̂. Then for any γ ∈ (0, 1), there exists ϵ > 0 such that starting from any prior

πθ0 ∈ Bϵ(π̂), the probability that the θ-modeler always plays actions in supp(σ) for all

periods is strictly larger than γ.

Proof. Let Pθ,Ω
θ(σ)

D denote the probability measure over the set of histories as implied

by model θ and Ωθ(σ). Namely, for any Ĥ ⊆ H, we have

Pθ,Ω
θ(σ)

D

(
Ĥ
)
=

1

πθ0(Ω
θ(σ))

∑
ω∈Ωθ(σ)

πθ0 (ω)P
θ,ω
D

(
Ĥ
)
,

where Pθ,ωD is the probability measure over H if the true DGP is as described by θ and

ω and the agent is a θ-modeler. If at−1 ∈ supp(σ), then the consistency of the SCE

implies that Pθ,Ω
θ(σ)

D (Yt|at−1) = Q∗(Yt|at−1) for Yt ⊂ Y .

Then for every ω ∈ Ωθ\Ωθ(σ),
πθ
t (ω)

πθ
t (Ωθ(σ))

is a non-negative martingale with respect

to Pθ,Ω
θ(σ)

D . It follows that
πθ
t (Ωθ\Ωθ(σ))
πθ
t (Ωθ(σ))

is also a non-negative martingale w.r.t. Pθ,Ω
θ(σ)

D .

By the Ville’s maximal inequality for supermartingales, for any η > 0,

Pθ,Ω
θ(σ)

D

(
πθt
(
Ωθ\Ωθ(σ)

)
πθt (Ω

θ(σ))
≥ η for some t

)
<

1

η

πθ0
(
Ωθ\Ωθ(σ)

)
πθ0 (Ω

θ(σ))
.
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Since πθt
(
Ωθ(σ)

)
= 1− πθt

(
Ωθ\Ωθ(σ)

)
, the above inequality implies that

Pθ,Ω
θ(σ)

D

(
πθt
(
Ωθ\Ωθ(σ)

)
≥ η

1 + η
for some t

)
<

1

η

πθ0
(
Ωθ\Ωθ(σ)

)
πθ0 (Ω

θ(σ))
.

If σ is quasi-strict, then supp (σ) = Aθm(π̂). Since Aθm is upper hemicontinuous

(Lemma 6), there exists ϵ̃ > 0 small enough such that supp (σ) ⊃ Aθm (π) for all

π ∈ Bϵ̃ (π̂). Pick some ϵ ∈ (0, ϵ̃) and πθ0 ∈ Bϵ (π̂), then πθ0
(
Ωθ\Ωθ(σ)

)
< ϵ and

a0 ∈ supp(σ). Note that the ratio
πθ
t (ω)

πθ
t (ω

′)
remain unchanged throughout all periods such

that at ∈ supp(σ) for any ω, ω′ ∈ Ωθ(σ) since ω and ω′ prescribe the same outcome dis-

tribution. Hence, if πθt ̸∈ Bϵ̃ (π̂) for some t ≥ 0 and we know that a1, ..., at−1 ∈ supp(σ),

then there exists t such that πθt
(
Ωθ\Ωθ(σ)

)
≥ πθ0

(
Ωθ\Ωθ(σ)

)
+ ϵ̃−ϵ. Using the previous

inequality,

Pθ,Ω
θ(σ)

D (at ̸∈ supp(σ) for some t)

= Pθ,Ω
θ(σ)

D (a0, ..., at−1 ∈ supp(σ) and at ̸∈ supp(σ) for some t)

≤ Pθ,Ω
θ(σ)

D

(
a0, ..., at−1 ∈ supp(σ) and πθt ̸∈ Bϵ̃ (π̂) for some t ≥ 0

)
≤ Pθ,Ω

θ(σ)
D

(
πθt
(
Ωθ\Ωθ(σ)

)
≥ πθ0

(
Ωθ\Ωθ(σ)

)
+ ϵ̃− ϵ for some t

)
<

(
1

πθ0 (Ω
θ\Ωθ(σ)) + ϵ̃− ϵ

− 1

)
πθ0
(
Ωθ\Ωθ(σ)

)
πθ0 (Ω

θ(σ))

<

(
1

ϵ̃− ϵ
− 1

)
ϵ

1− ϵ

which converges to 0 as ϵ approaches 0. This implies that for any γ ∈ (0, 1) we have

Pθ,Ω
θ(σ)

D (at ∈ supp(σ),∀t ≥ 0) > γ when ϵ is sufficiently small. By the consistency of

the SCE, PD (at ∈ supp(σ),∀t ≥ 0) = Pθ,Ω
θ(σ)

D (at ∈ supp(σ),∀t ≥ 0) > γ.

B.2 Proof of Lemma 2

By Lemma 4, on paths where θ is eventually forever adopted, beliefs πθt and πθ
′
t both

converge almost surely. Consider any ω̂ such that with positive probability, mt eventu-

ally equals θ and ω̂ ∈ supp
(
πθ∞
)
. Let A− (ω̂) ≡

{
a ∈ A : qθ (·|a, ω̂) ̸= q∗ (·|a)

}
. I now

show that every action in A− (ω̂) is played at most finite times a.s. on the paths where

mt converges to θ and ω̂ ∈ supp
(
πθ∞
)
. Suppose instead that actions in A− (ω̂) are

played infinitely often. Then there must exist some γ > 0 such that E ln q∗(y|at)
qθ(y|at,ω̂) > γ
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for infinitely many t. Since θ′ is correctly specified, there exists a parameter ω∗ ∈ Ωθ′

such that q∗ (·|a) ≡ qθ
′
(·|a, ω∗) , ∀a ∈ A. Hence, E ln qθ

′
(y|at,ω∗)

qθ(y|at,ω̂) > γ for infinitely many

t. Notice that

λt = s
ℓt(θ

′)

ℓt(θ)
=

∑
ω′∈Ωθ′

∏t−1
τ=0 q

θ′ (yτ |aτ , ω′) πθ
′

0 (ω′)∑
ω∈Ωθ

∏t−1
τ=0 q

θ (yτ |aτ , ω) πθ0 (ω)

> πθt (ω̂)
πθ

′
0 (ω∗)

πθ0 (ω̂)

∏t−1
τ=0 q

θ′ (yτ |at, ω∗)∏t−1
τ=0 q

θ (yτ |aτ , ω̂)

= πθt (ω̂)
πθ

′
0 (ω∗)

πθ0 (ω̂)
exp

[
t−1∑
τ=0

1{aτ∈A−(ω̂)} ln
qθ

′
(yτ |at, ω∗)

qθ (yτ |aτ , ω̂)

]
,

which, by Lemma 5, a.s. increases to infinity as t→ ∞, contradicting the assumption

that mt converges to θ. Therefore, on the paths where mt eventually equals θ, almost

surely, there exists T such that at ∈ A\ ∪ω̂∈supp(πθ
∞
) A− (ω̂) ,∀t > T .

Since qθ (·|a, ω′) ≡ q∗ (·|a) for all ω′ ∈ supp
(
πθ∞
)
and all a ∈ A\∪ω′∈supp

(
πθ
∞
)A− (ω′),

the actions that are played in the limit have no experimentation value and are my-

opically optimal. Therefore, any strategy that takes support on the limit actions is a

self-confirming equilibrium. Fixing a particular value of πθ∞ that is a limit belief for a

positive measure of histories where mt eventually equals θ, there exists a set of actions

Â ⊆ Aθm
(
πθ∞
)
such that on those histories, the agent only plays actions from this set

in the limit. Since mt eventually converges to θ, it must be true that with positive

probability, a θ-modeler who inherits the switcher’s prior and policy from the period

when the last switch happens also only plays actions from Â in the limit with positive

probability. Therefore, take any strategy σ with supp (σ) = Â, it is a p-absorbing

self-confirming equilibrium under θ.

B.3 Proof of Theorem 1

In this proof, I first show that if α > 1, model θ is globally robust for at least one

full-support prior if and only if there exists a p-absorbing SCE under model θ (i.e.

statement (i) holds if and only if statement (iii) holds). Lemma 2 immediately implies

the necessity of the existence of a p-absorbing SCE. I now prove Lemma 10, which is

then used to show sufficiency.

Then, I proceed to show that if α > 1 and model θ is locally robust for at least one

full-support prior, then there exists a p-absorbing SCE under model θ (i.e. statement

(ii) implies (iii)). Since it is immediate that global robustness implies local robustness
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(i.e. statement (i) implies (ii)), Theorem 1 follows.

Lemma 10. If σ is a p-absorbing SCE, then for any γ ∈ (0, 1) and ϵ > 0, there exists

a full-support prior πθ0 at which, with probability higher than γ, a θ-modeler only plays

actions in supp(σ) and her belief stays within Bϵ(∆Ωθ(σ)) for all periods.

Proof of Lemma 10. Suppose there exists a p-absorbing SCE σ under θ. Consider

the learning process of a θ-modeler. By definition, there exists a full-support prior

πθ0 ∈ ∆Ωθ such that with positive probability, she eventually only plays actions in

supp (σ) and each element of supp (σ) is played infinitely often (this is without loss of

generality). Denote those paths by H̃. Then by a similar argument as in the proof of

Lemma 2, πθt a.s. converges to a limit πθ∞ on H̃, with supp
(
πθ∞
)
⊆ Ωθ(σ) = {ω ∈ Ωθ :

q∗ (·|a) = qθ (·|a, ω) ,∀a ∈ supp (σ)}.
This implies the existence of an integer T > 0 such that, with positive probability, we

have (1) at ∈ supp(σ),∀t ≥ T , (2) πθt converges to a limit πθ∞ with supp(πθ∞) ⊆ Ωθ(σ).

Pick any ϵ > 0. Since the learning processes are Markov, we can find a new prior

π̃θ0 ∈ Bϵ(∆Ωθ(σ)) under which, on a positive measure of histories, a θ-modeler behaves

such that (1′) at ∈ supp(σ),∀t ≥ 0, and (2′) the posterior π̃θt almost surely converges

to πθ∞ and never leaves Bϵ(∆Ωθ(σ)) for all t ≥ 0.

Denote the event described by (1′) and (2′) by E. I now show for any constant

γ ∈ (0, 1), there exists a full-support prior π̂θ0 such that if the θ-modeler starts with such

a prior, PD(E) > γ. Suppose for contradiction that this is not true. Denote the prob-

ability of E given any full-support prior πθ by γ(πθ) and let γ := supπθ
0∈int(∆Ωθ) γ(π

θ),

where int(∆Ωθ) denotes all full-support beliefs over Ωθ, then it follows from assump-

tion that γ < 1. By definition of γ, for any ψ > 0, there exists some prior πθ,ψ0 such

that γ(πθ,ψ0 ) > γ −ψ. But under this prior, with probability 1− γ(πθ,ψ0 ), the dogmatic

modeler eventually either arrives at some posterior πθ,ψt that either leads her to play

an action outside supp(σ) or leaves the neighborhood Bϵ(∆Ωθ(σ)). Hence, there exists

an integer T > 0 such that

PD
(
γ(πθ,ψT ) = 0

)
> γ(πθ,ψ0 )− ψ > γ − 2ψ.

Now, consider the supremum probability that E is achieved if the agent starts with a

prior that is equal to one such posterior πθ,ψT . Since

γ(πθ,ψ0 ) = EPD
hT∈HT

γ(πθ,ψT ),
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we have

sup
hT∈HT

γ(πθ,ψT ) ≥ γ(πθ,ψ0 )

1− PD
(
γ(πθ,ψT ) = 0

)
>

γ − ψ

1− γ + 2ψ
.

But notice that when ψ is sufficiently small, the term γ−ψ
1−γ+2ψ

is strictly larger than

γ, contradicting the assumption that γ is the supremum of γ(πθ) over all full-support

priors.

Proof of Theorem 1 (iii)⇒(i). Pick any competing model θ′ ∈ Θ and any full-support

prior πθ
′

0 ∈ ∆Ωθ′ . Let St := ℓt(θ
′)/ℓt(θ

∗), then St is a martingale with respect to both

PD and PS. By Ville’s maximal inequality for supermartingales, the probability that

Sn is bounded above by a positive constant larger than 1 is bounded away from 0. In

particular, for any η ∈ (1, α),

PD(St ≤ η,∀t ≥ 0) ≥ 1− EPDS0

η
= 1− 1

η
.

Note that this inequality holds for any model θ′.

Denote by σ a p-absorbing SCE under θ. By Lemma 10, we know that for any

η ∈ (1, α) and ϵ > 0, there exist a prior πθ0 ∈ Bϵ(∆Ωθ(σ)) such that PD(E) > 1/η (the

event E is defined in the proof of Lemma 10). Therefore,

PD(E occurs and St ≤ η,∀t ≥ 0)

≥ PD(E) + PD(St ≤ η,∀t ≥ 0)− 1 > 0.

Denote the histories where E occurs and St ≤ η,∀t ≥ 0 by Ĥ. When ϵ is small enough,

we have that on Ĥ,

λt =
ℓt(θ

′)

ℓt(θ)
=

∑
ω′∈Ωθ′ πθ

′
0 (ω′)

∏t−1
τ=0 q

θ′ (yτ |aτ , ω′)∑
ω∈Ωθ πθ0 (ω)

∏t−1
τ=0 q

θ (yτ |aτ , ω)

<

∑
ω′∈Ωθ′ πθ

′
0 (ω′)

∏t−1
τ=0 q

θ′ (yτ |aτ , ω′)

πθ0 (Ω
θ(σ))

∏t−1
τ=0 q

∗ (yτ |aτ )

≤ η

1− ϵ
< α

where the first inequality follows from the fact that πθ0 is full-support and the second

56



inequality follows from the definition of Ĥ. Thus, on Ĥ, the switcher never makes any

switch to the competing model θ′, i.e. mt = θ, ∀t ≥ 0, and her action choices would

be identical to the θ-modeler. Therefore, if we endow the switcher with the same prior

πθ0, event Ĥ also occurs with positive probability under PS.

Proof of Theorem 1 (ii)⇒(iii). I show that if θ is locally robust at some prior, then it

must admit a p-absorbing SCE. Construct a competing model θ′ as follows. Let θ′ have

the identical parameter space as θ, i.e. Ωθ′ = Ωθ, and let its predictions be given by

qθ
′
(·|a, ω) = µqθ (·|a, ω)+(1−µ)q∗ (·|a), for all a ∈ A and all ω ∈ Ωθ, where µ ∈ (0, 1).

For any ϵ > 0, when µ is close enough to 1, we have θ′ ∈ Nϵ (θ). By the definition of

local robustness, there exists ϵ > 0 such that θ persists against θ′ at some full-support

priors πθ0 and πθ
′

0 = πθ0. Consider any ω̂ ∈ Ωθ such that

PS
(
mt eventually equals θ and lim inf

t→∞
πθt (ω̂) > 0

)
> 0.

Let A−(ω̂) := {a ∈ A : qθ(·|a, ω̂) ̸= q∗(·|a)}. Then every action in A−(ω̂) is played at

most finite times a.s. on the path wheremt eventually equals θ and lim inft→∞ πθt (ω̂) >

0. Suppose instead that actions in A− (ω̂) are played infinitely often. Then there must

exist some γ > 0 such that E ln q∗(y|at)
qθ(y|at,ω̂) > γ for infinitely many t. So we have

E ln
qθ

′
(y|at, ω̂)

qθ (y|at, ω̂)
= E ln

(
µ+ (1− µ)

q∗ (y|at)
qθ (y|at, ω̂)

)
> (1− µ)γ

where the inequality follows from the concavity of the logarithm function. Therefore,

λt =

∑
ω∈Ωθ

∏t−1
τ=0 q

θ′ (yτ |aτ , ω) πθ0 (ω)∑
ω∈Ωθ

∏t−1
τ=0 q

θ (yτ |aτ , ω) πθ0 (ω)

>πθt (ω̂)
πθ0 (ω̂)

πθ0 (ω̂)

∏t−1
τ=0 q

θ′ (yτ |at, ω̂)∏t−1
τ=0 q

θ (yτ |aτ , ω̂)

=πθt (ω̂) exp

[
t−1∑
τ=0

1{aτ∈A−(ω̂)} ln
qθ

′
(yτ |at, ω̂)

qθ (yτ |aτ , ω̂)

]
,

which, by Lemma 5, a.s. increases to infinity whenmt converges to θ and lim inft→∞ πθt (ω̂) >

0. This implies that, letting Ω̂θ := {ω ∈ Ωθ : lim inft→∞ πθt (ω̂) > 0}, on the paths

where mt eventually equals θ, there almost surely exists T such that at ∈ A\ ∪ω̂∈Ω̂θ

A− (ω̂) ,∀t > T . Since qθ (·|a, ω̂) is equal to q∗ (·|a) for all ω̂ ∈ Ω̂θ and all a ∈
A\ ∪ω̂∈Ω̂θ A− (ω̂), the posterior πθt must converge to a limit πθ∞. The rest of the

57



arguments are identical to those in the proof of Lemma 2; it follows that θ must admit

a p-absorbing SCE.

B.4 Proof of Theorem 2

Below I prove Theorem 2 (i) and (iii). Then (ii) immediately follows from (i).

Proof of Theorem 2 (i). I first prove that global robustness requires prior tightness

(necessity) and then prior tightness implies global robustness (sufficiency).

Necessity. Suppose θ is globally robust at prior πθ0. By Theorem 1, we know that

there must exist a p-absorbing SCE under θ. By identifiability, any SCE can only be

supported by a pure belief, and hence Cθ ̸= ∅. Suppose for the sake of contradiction

that πθ0(C
θ) < 1/α. I now construct a competing model such that model θ does not

persist against this model at πθ0.

Consider a competing model θ′ ∈ Θ such that it contains the prediction associated

with the parameters in Cθ and the true DGP. In particular, let Ωθ′ = Cθ ∪ {ω∗} and

suppose the predictions of model θ′ satisfy that for all a ∈ A,

qθ
′
(·|a, ω) =

qθ(·|a, ω) if ω ∈ Cθ,

q∗(·|a) if ω = ω∗.

In addition, pick some ϵ ∈ (0, 1) and pick the prior πθ
′

0 to be

πθ
′

0 (ω) =

(1− ϵ)
πθ
0(ω)

πθ
0(C

θ)
if ω ∈ Cθ,

ϵ if ω = ω∗.

Since θ′ is correctly specified, by Lemma 2, on the paths where mt eventually equals

θ, the agent eventually only play actions in the support of an SCE almost surely, and

her posterior converges to a supporting belief of the SCE, i.e. πθt (C
θ)

a.s.−−→ 1. By

construction

ℓt(θ
′) = (1− ϵ)

∑
ω∈Cθ

πθ0(ω)

πθ0(C
θ)
ℓt(θ, ω) + ϵℓt(θ

∗),

so we have

ℓt(θ
′)

ℓt(θ)
= (1− ϵ)

πθt (C
θ)

πθ0(C
θ)

+ ϵ
ℓt(θ

∗)

ℓt(θ)
.
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Since θ′ is correctly specified, by Lemma 2, on paths where mt eventually equals θ,

the first term almost surely converges to (1 − ϵ) 1
πθ
0(C

θ)
. Since πθ0(C

θ) < 1/α, there

exists ϵ sufficiently small such that ℓt(θ′)
ℓt(θ)

> α for sufficiently large t, contradicting the

assumption that mt eventually equals θ.

Sufficiency. Suppose Cθ ̸= ∅ and πθ0(C
θ) ≥ 1/α. Pick any competing model θ′ and a

full-support prior πθ
′

0 . I now show that model θ persists against θ′ at the given priors.

Define a new probability measure P̂ over the action and outcome histories H such that

for any histories Ĥ ⊂ H,

P̂
(
Ĥ
)
=
∑
ω∈Cθ

πθ0 (ω)

πθ0(C
θ)
Pθ,ωS

(
Ĥ
)
,

where Pθ,ωS is the probability measure over histories induced by the agent switcher if

the true DGP is identical to the DGP prescribed by θ and ω. Define the following

process,

λ̂t :=
1

πθ0(C
θ)

ℓt(θ
′)∑

ω∈Cθ
πθ
0(ω)

πθ
0(C

θ)
ℓt(θ, ω)

.

Then it is a martingale w.r.t. P̂ with EP̂(λ̂t) = 1/πθ0(C
θ). Moreover, letting ηt :=

πθ0(C
θ)λ̂t, then ηt is also a martingale w.r.t. P̂ with EP̂(ηt) = 1. Since EP̂(η1) = 1, it

must be that η1 = 1 almost surely, or there exists η < 1 such that η1 ≤ η with positive

probability. Suppose for now that the latter is the case.

By definition, λ̂t ≥ λt, where the equality holds only if Ωθ = Cθ. Note that

P̂(λt ≤ α, ∀t) ≥ P̂(λ̂t ≤ α, ∀t)
= P̂(ηt ≤ πθ0(C

θ)α, ∀t)
≥ P̂(η1 ≤ η and ηt ≤ πθ0(C

θ)α, ∀t ≥ 2)

≥ P̂(η1 ≤ η) · inf
η1≤η

P̂(ηt ≤ πθ0(C
θ)α, ∀t ≥ 2|η1)

≥ P̂(η1 ≤ η) ·
(
1− η

πθ0(C
θ)α

)
> 0,

where the first inequality follows from λ̂t ≥ λt, the second inequality follows from

πθ0(C
θ) ≥ 1/α, and the fourth inequality follows from Ville’s maximal inequality. If

η1 = 1 almost surely with respect to P̂, then we only need to consider ηt from t = 2 and

can apply the same argument as above unless η2 = 1 almost surely as well. Iterating

this argument, the only remaining case is where ηt = 1 for all t, but in this case
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P̂(ηt ≤ πθ0(C
θ)α, ∀t) = 1.

This then implies that there exists ω̂ ∈ Cθ such that

Pθ,ω̂S (λt ≤ α, ∀t) > 0.

Since θ has no traps, it is identifiable and all of its p-absorbing SCEs are quasi-strict.

Identifiability implies that Pθ,ω̂S (limt→∞ πθt (ω̂) = 1) = 1. With quasi-strictness, by

Lemma 9, there exists ϵ > 0 such that the optimal actions must be in the support of

an SCE when πθt (ω̂) > 1− ϵ. Taken together, the no-trap conditions imply that there

exists T > 0 such that with positive probability (measured by Pθ,ω̂S ), the agent plays

only SCE actions after period T and never switches. Denote the set of such histories

by Ĥ. Moreover, for any ĥ ∈ Ĥ, denote the observable history for the first T periods

by ĥT− and the history after the first T periods by ĥT+. Since T is finite, by absolute

continuity (Assumption 2), for any ĥ ∈ Ĥ, the history ĥT− also occurs with positive

probability under the true measure PS. Conditional on ĥT−, since the agent plays only
SCE actions on Ĥ after the first T periods, the two probability measures Pθ,ω̂S and PS
over Ĥ are identical to each other. Therefore,

PS(Ĥ) =
∑
ĥ∈Ĥ

PS(ĥT−)PS(ĥT+|ĥT−)

=
∑
ĥ∈Ĥ

PS(ĥT−)Pθ,ω̂S (ĥT+|ĥT−)

≥ min
h̃∈Ĥ

PS(h̃T−)
Pθ,ω̂S (h̃T−)

Pθ,ω̂S (Ĥ) > 0.

This means that with positive probability (under the true probability measure PS), the
agent never switches to θ′. Therefore, model θ persists against θ′ at priors πθ0 and πθ

′
0 .

Proof of Theorem 2 (iii). I first prove that Cθ ̸= ∅ is a necessary condition for local

robustness and then show that it is also sufficient.

Necessity. Suppose θ is locally robust at some full-support prior πθ0. It follows from

Theorem 1 and identifiability that there exists ω̂ ∈ Ωθ such that the degenerate belief

δω supports a p-absorbing SCE under θ, i.e. Cθ ̸= ∅.

Sufficiency. Suppose model θ has no traps and Cθ ̸= ∅. I now show that model θ is

locally robust for all full-support priors. Take any ω̂ ∈ Cθ and any full-support prior

πθ0. Consider the probability measure Pθ,ω̂S , i.e. the probability measure over infinite
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histories H induced by the switcher if the true DGP is as described by θ and ω̂. By

identifiability and Lemma 5, the posterior πθt converges to δω̂ almost surely under Pθ,ω̂S .

So for any µ > 0, we can find a set of length-T histories ĤT with positive measure

where the posterior for model θ enters the µ-neighborhood of δω̂, i.e. π
θ
T ∈ Bµ(δω̂). Let

µ be small enough so that the posterior πθT (ω̂) > 1/
√
α. By absolute continuity and

the finiteness of T , we know ĤT is also realized with positive probability under the

true measure PS.
Next I show that for any η ∈ (0, 1), we can choose ϵ to be sufficiently small such

that for any θ′ ∈ Nϵ(θ) and prior πθ
′

0 ∈ N θ,θ′
ϵ (πθ0), the probability that the Bayes

factor λt never exceeds
√
α before period T is strictly larger than η. For each ω ∈ Ωθ,

with a slight abuse of notation, denote the set of ϵ-nearby parameters within θ′ by

N θ,θ′
ϵ (ω) := {ω′ ∈ Ωθ′ : d(Qθ,ω, Qθ′,ω′

) ≤ ϵ}.
Let ϵ be sufficiently small such that N θ,θ′

ϵ (ω) is disjoint across Ωθ. By construction

we have πθ
′

0 (N
θ,θ′
ϵ (ω)) ≤ πθ0(ω) + ϵ. Hence,

λt =
ℓt(θ

′)

ℓt(θ)
=

∑
ω∈Ωθ

∑
ω′∈Nθ,θ′

ϵ (ω)
πθ

′
0 (ω′)

∏t−1
τ=0 q

θ′ (yτ |aτ , ω′)∑
ω∈Ωθ πθ0 (ω)

∏t−1
τ=0 q

θ (yτ |aτ , ω)

<

∑
ω∈Ωθ(πθ0 (ω) + ϵ)

∑
ω′∈Nθ,θ′

ϵ (ω)
µ0(ω

′)
∏t−1

τ=0 q
θ′ (yτ |aτ , ω′)∑

ω∈Ωθ πθ0 (ω)
∏t−1

τ=0 q
θ (yτ |aτ , ω)

where µ0(ω
′) :=

πθ′
0 (ω′)

πθ′
0

(
Nθ,θ′

ϵ (ω)
) . We can treat the collection of N θ,θ′

ϵ (ω) as a new model

and µ0 as the associated prior. This allows us to write the sum of the likelihoods in

recursive form,

∑
ω′∈Nθ,θ′

ϵ (ω)

µ0(ω
′)
t−1∏
τ=0

qθ
′
(yτ |aτ , ω′) =

t−1∏
τ=0

 ∑
ω′∈Nθ,θ′

ϵ (ω)

µτ (ω
′)qθ

′
(yτ |aτ , ω′)

 .
Let Q̂µ :=

∑
ω′∈Nθ,θ′

ϵ (ω)
µ(ω′)Qθ′,ω′

. Note that for any µ ∈ ∆(N θ,θ′
ϵ (ω)), we have

d(Qθ,ω, Q̂µ) ≤ ϵ. Therefore, by Lemma 8, for any r > 0 and γ < 1, when ϵ is suf-

ficiently small, the probability that∑
ω′∈Nθ,θ′

ϵ (ω)
µ0(ω

′)
∏t−1

τ=0 q
θ′ (yτ |aτ , ω′)∏t−1

τ=0 q
θ (yτ |aτ , ω)

≤ (1 + r)t (11)

occurs is larger than γ. Since Ωθ is finite, this implies that for any r > 0 and η < 1,
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we can find ϵ sufficiently small such that the probability that Eq. (11) occurs for every

ω ∈ Ωθ is larger than η. Notice that when Eq. (11) occurs for every ω ∈ Ωθ,

λt < max
ω∈Ωθ

(
1 +

ϵ

πθ0(ω)

)
(1 + r)t .

Hence, for any η > 0, we can choose ϵ to be sufficiently small so that the probability

that λt does not exceed
√
α for t = 0, ..., T is larger than η. Denote the length-T

histories where λt ≤
√
α for t = 0, ..., T as H̃T . Recall that ĤT is realized with positive

probability. Since the choice of η is arbitrary, we can choose ϵ sufficiently small so that

the probability that ĤT ∩ H̃T is strictly positive.

Finally, note that for any t > T , we can write

λt = λT

∑
ω′∈Ωθ′

∏t−1
τ=T π

θ′
τ (ω

′)qθ
′
(yτ |aτ , ω′)∑

ω∈Ωθ

∏t−1
τ=T π

θ
τ (ω)q

θ(yτ |aτ , ω)
:= λTλT,t.

Recall that on histories ĤT ∩ H̃T we have πθT (ω̂) > 1/
√
α, so we can use the same

arguments as in the proof of Theorem 2(ii) to show that PS(λT,t ≤
√
α, ∀t > T ) > 0.

Since on ĤT ∩ H̃T the agent does not switch before period T and ϵ is small enough

such that λT <
√
α, we have PS(λt ≤ α, ∀t ≥ 0) ≥ PS(ĤT ∩ H̃T ) · PS(λT,t ≤

√
α, ∀t >

T ) > 0.

B.5 Proof of Theorem 3

Note that in the proof of Theorem 2, we prove the sufficiency of prior tightness for

global robustness without using the assumption that α > 1. When α = 1, the prior

tightness requirement πθ0(C
θ) = 1 is equivalent to Cθ = Ωθ. Therefore, Cθ = Ωθ is also

a sufficient condition for global robustness when α = 1. Now it suffices to show that

Cθ = Ωθ is a necessary condition for local robustness when α = 1.

Suppose θ ∈ Θ admits at least one p-absorbing SCE and πθ0(C
θ) < 1. This implies

that there exists ω̃ ∈ Ωθ such that ω̃ ̸∈ Cθ. Consider a local perturbation of model θ,

denoted by θ′, with the same parameter space Ωθ′ = Ωθ and prior πθ
′

0 = πθ0 but slightly

different prediction for ω̃:

qθ
′
(·|a, ω) =

qθ(·|a, ω) if ω ̸= ω̃

µqθ(·|a, ω) + (1− µ)q∗(·|a) if ω = ω̃
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Then for any ϵ > 0, when µ ∈ (0, 1) is close enough to 1, we have θ′ ∈ Nϵ(θ). Suppose

θ is locally robust and thus persists against θ′ for sufficiently small ϵ at priors πθ0 and

πθ
′

0 . Then the Bayes factor satisfies

λt =

∑
Ωθ′ πθ

′
0 (ω

′)
∏t−1

τ=0 q
θ(yτ |aτ , ω′)∑

Ωθ πθ0(ω)
∏t−1

τ=0 q
θ(yτ |aτ , ω)

=

∑
ω ̸=ω̃ π

θ
0(ω)

∏t−1
τ=0 q

θ(yτ |aτ , ω) + πθ0(ω̃)
∏t−1

τ=0 q
θ′(yτ |aτ , ω̃)∑

ω ̸=ω̃ π
θ
0(ω)

∏t−1
τ=0 q

θ(yτ |aτ , ω) + πθ0(ω̃)
∏t−1

τ=0 q
θ(yτ |aτ , ω̃)

.

If θ persists against θ′, then there exists T > 0 such that λt ≤ α = 1 for all t ≥ T ,

which holds if and only if
∏t−1

τ=0 q
θ′ (yτ |aτ ,ω̃)∏t−1

τ=0 q
θ(yτ |aτ ,ω̃)

≤ 1 for all t ≥ T. This is further equivalent to

t−1∑
τ=0

ln
µqθ(yτ |aτ , ω̃) + (1− µ)q∗(yτ |aτ )

qθ(yτ |aτ , ω̃)
≤ 0,∀t ≥ T.

By concavity of the log function, the above inequality holds only when

t−1∑
τ=0

ln
qθ(yτ |aτ , ω̃)
q∗(yτ |aτ )

≥ 0,∀t ≥ T. (12)

Note that for any a ∈ A such that qθ(·|a, ω̃) ̸= q∗(·|a),

DKL

(
q∗(yτ |aτ ) ∥ qθ(yτ |aτ , ω̃)

)
> 0.

Therefore, Eq. (12) holds only if there exists T ′ ∈ N+ such that qθ(·|at, ω̃) = q∗(·|at)
for any t ≥ T ′. This contradicts the assumption that ω̃ ̸∈ Cθ. Hence, θ cannot be

locally robust. □

B.6 Proof of Proposition 1

Define correspondence h : [ω, ω] ⇒ [ω, ω], such that h(ω) returns all best-fitting fun-

damentals at any myopically optimal action against the degenerate belief δω. That is,

for any ω̂ ∈ H(ω), there exists â(ω) ∈ Aθm(δω) such that

g(â(ω), b̂, ω̂) = g(â(ω), b∗, ω∗).

Fix any b̂, there exists an increasing sequence {ωk}Kk=0 with K ≥ 0, ω0 = ω, ωK = ω

such that ak ∈ A is the unique myopically optimal action over (ωk−1, ωk) and both ak−1
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and ak are myopically optimal at ωk−1. Then h(ω) consists of a single element within

each interval (ωk−1, ωk) and exactly two elements for ω = ωk, given by limω↑ωk
h(ω) and

limω↓ωk
h(ω). In addition, h is flat within (ωk−1, ωk). If there exists a self-confirming

equilibrium under model θ, then it must be supported by a degenerate belief at ω such

that h(ω) ∋ {ω}. If h(ω) = {ω} ⊂ (ωk−1, ωk) for some k, then ak is a strict SCE

(hence p-absorbing) with the supporting belief δω. For convenience, when h(ω) = {ω̂},
I abuse notation and write h(ω) = ω̂.

Suppose b̂ > b∗, then h jumps up discontinuously at all cutoffs {ωk}1≤k≤K−1. Sup-

pose there exists no solution to h(ω) = ω. Then since h(ω) ≥ ω and h(ω) ≤ ω, we

know that there must exist k̂ such that h(ω) > ω for all ω ∈ (ωk∗−1, ωk∗) and h(ω
′) < ω′

for all ω′ ∈ (ωk∗ , ωk∗+1). But this contradicts the fact that h is weakly increasing. It

follows that there exists a solution ω̂ ∈ (ωk̂−1, ωk̂) such that h(ω̂) = ω̂. So ak is a strict

SCE and, by Corollary 1, model θ is locally robust.

Now suppose b̂ < b∗, then h jumps down discontinuously at the cutoffs {ωk}1≤k≤K−1.

Hence, there exists at most one solution to h(ω) = ω. When b̂ = b∗, there exists a

unique solution to h(ω) = ω, i.e. ω = ω∗. Let β0 = b∗. Now suppose there exists an

SCE σ† when the agent believes his ability is given by b̃. If maxAθm(ω
∗) ∈ supp(σ†),

then by the upper-hemicontinuity of Aθm, when b̂ is lower than but sufficiently close to b̃,

there exists some ω̂ > ω∗ such that g(a†, b̂, ω̂) = g(a†, b∗, ω∗), where a† = max supp(σ†)

and is the unique myopically optimal action against δω̂. It follows that a
† is a strict SCE

under θ. When b̂ is sufficiently lower than b̃ such that a† ∈ Aθm(ω̂) but a
† ̸= maxAθm(ω̂)

for the first time, a† is still an SCE but no longer strict. Then if the agent believes his

ability is b̂− ϵ and ϵ is sufficiently small,

g(a†, b̂− ϵ, ω̂) < g(a†, a∗, ω∗),

but for any a†′ > a†,

g(a†′, b̂− ϵ, ω̂) > g(a†, a∗, ω∗).

Therefore, h(ω) = ω admist no solution when the agent’s self-perception is b̂− ϵ when

ϵ is sufficiently small. Note that when b̂ = b∗, any mixed action over Aθm(ω
∗) is a

SCE, so there exists a strict SCE for any b̂ lower than but sufficiently close to β0. By

the previous reasoning, if there exists b̂ such that maxAθm(ω
∗) is no longer the largest

optimal action at the best-fitting fundamental, then letting β1 = b̂, there exists no

SCE for b̃ lower than but sufficiently close to β1. Iterating this argument leads to the

interval structures described in the statement of Proposition 1. □
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B.7 Proof of Proposition 3

It suffices to show that the agent makes a switch to θ̂ with positive probability. It then

follows from Proposition 2 that θ̂ is eventually adopted forever with positive probability.

Define a new probability measure P̂ over the action and outcome histories H such

that for any histories Ĥ ⊂ H,

P̂
(
Ĥ
)
= πθ̂0(ω

L)Pθ̂,ω
L

S

(
Ĥ
)
+ πθ̂0(ω

R)Pθ̂,ω
R

S

(
Ĥ
)
,

where Pθ̂,ωS is the probability measure over histories induced by the agent switcher if

the true DGP is identical to the DGP prescribed by θ̂ and ω. Then ℓt(θ, ω
M)/ℓt(θ̂) is

a martingale w.r.t. P̂ with an expectation of 1. Hence, for any η > 1, the probability

that ℓt(θ, ω
M)/ℓt(θ̂) ≤ η for all t is positive (measured by P̂). Since aM is the only SCE

under model θ, by Lemma 2 the agent almost surely eventually play aM on the paths

where the model choice eventually equals θ. If so, the agent’s posterior πθt almost surely

converges to δωM . In summary, on paths where mt eventually equals θ, it happens with

positive probability (measured by P̂) that ℓt(θ, ωM)/ℓt(θ̂) ≤ η for all t and πθt
a.s.−−→ δωM .

This then implies that for any ϵ > 0, we can construct a finite sequence of outcome

realizations (y0, ..., yt−1) such that ℓt(θ, ω
M)/ℓt(θ̂) ≤ η for all t ≤ T and πθT ∈ Bϵ(δωM ).

Moreover, since T is finite, this sequence of outcomes are also realized with positive

probability under the true measure PS. Notice that

ℓT (θ̂)

ℓT (θ)
= πθT (ω

M)
ℓT (θ̂)

πθ0(ω
M)ℓt(θ, ωM)

≥ (1− ϵ)
η

πθ0(ω
M)

,

where the right-hand side is strictly larger than α when πθ0(ω
M) < 1/α if ϵ is close

enough to 0 and η is close enough to 1. Therefore, the agent makes a switch from θ to

θ̂ with positive probability.

B.8 Proof of Theorem 4

It suffices to show that when α > K, a model θ is globally robust for at least one

full-support prior if θ admits a p-absorbing SCE. Without loss of generality, take any

Θ′ = {θ1, ..., θK} ⊆ Θ and define for each k ∈ {1, ..., K} a process {Skt }t as follows,

Skt =

∑
ω′∈Ωθk π

θk

0 (ω′)
∏t

τ=0 q
θk(yτ |aτ , ω′)∏t

τ=0 q
∗(yτ |aτ )

.
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Then for any η ∈ (1, α), we have

PD(Skt ≤ η,∀t ≥ 0) ≥ 1− EPDSk0
η

= 1− 1

η
.

Hence, when η is sufficiently close to α,

PD(Skt ≤ η,∀t ≥ 0,∀k ∈ {1, ..., K})

≥ 1−
K∑
k=1

PB(S
k
t > η for some t ≥ 0)

≥ 1− K

η
> 0.

The rest of the argument is identical to the proof in Appendix B.3. □

B.9 Non-Myopic Agent

Say that an SCE or a BN-E σ with supporting belief π is uniformly quasi-strict if

supp (σ) = Aθm (π) for every belief π ∈ ∆Ωθ (σ). The following lemma implies that

given any discount factor, a uniformly quasi-strict SCE is p-absorbing.

Lemma 11. Suppose the θ-modeler has discount factor δ ∈ (0, 1). Suppose σ is a

uniformly quasi-strict SCE with supporting belief π̂, then for any γ ∈ (0, 1), there

exists ϵ > 0 such that starting from any prior πθ0 ∈ Bϵ(π̂), the probability that the

θ-modeler always plays actions in supp(σ) for all periods is strictly larger than γ.

Proof. Since σ is uniformly quasi-strict with supporting belief π, supp (σ) contains

all myopically optimal actions against each degenerate belief δω concentrated on ω ∈
supp (π). In addition, supp (σ) must be optimal against δω for an agent who maximizes

discounted utility, because the dynamic programming problem described by (6.2) re-

duces to a static maximization problem when the belief is degenerate. This implies

that supp (σ) is also (dynamically) optimal against π. Further, since Aθ is upper hemi-

continuous (by Lemma 6), there exists ϵ̃ > 0 small enough such that supp (σ) = Aθ (π̃)

for all π̃ ∈ Bϵ̃ (π). The rest of the proof is identical to the proof of Lemma 9.

66



C Omitted Examples

C.1 Examples Omitted from Section 4

Example 3 (A p-absorbing mixed SCE). Consider the problem of a dogmatic modeler

who holds model θ, where there are two actions A = {1, 2} and three parameters

Ωθ = {ω1, ω2, ω3} = {1, 1.5, 2} inside the parameter space of model θ. The agent’s

payoff is simply the outcome yt, with the true DGP being the normal distribution

N(0.25, 1) for all actions. Model θ is misspecified, predicting that yt ∼ N((ω−at)
2, 1).

Note that every mixed action is a self-confirming equilibrium, with the supporting

belief assigning probability 1 to the parameter value ω∗
2 = 1.5. Here, every fully mixed

SCE is p-absorbing since its support contains every action that can be played by the

agent.

But her action sequence never converges. To see that, notice that the agent’s optimal

action is unique when her posterior belief assigns different probabilities to ω1 and ω3.

In particular, her optimal action a∗(πθt ) = 1 when πθt (ω1) > πθt (ω3) and a∗(πθt ) = 2

when πθt (ω1) < πθt (ω3). When playing a = 2, the agent anticipates the outcome to

be distributed according to yt ∼ N((ω − at)
2, 1). However, given the true distribution

N(0.25, 1), the agent eventually attaches a lower probability to ω1 than ω3, which then

leads her to play a = 1. By a similar logic, the agent cannot settle on action a = 1

either. Therefore, the agent perpetually oscillates between the two actions, while her

belief converges to a degenerate distribution at ω2 since it outperforms the other two

parameter values by fitting the data perfectly.

Example 4 (A self-confirming equilibrium that fails to be p-absorbing). Consider

a dogmatic modeler’s problem, where there are two actions A = {1, 3} and three

parameters Ωθ = {1, 2, 3} inside the parameter space of model θ. The agent’s payoff

is the absolute value of the outcome, |yt|, with the true DGP of yt given by a normal

distribution N(1, 1) for all actions. Consider a misspecified model θ that predicts

yt ∼ N(ω− at, 1). Note that θ admits a single self-confirming equilibrium in which the

agent plays a∗ = 1 with probability 1, supported by a belief that assigns probability 1

to ω∗ = 2. However, this SCE is not p-absorbing. To see that, notice that the agent

is indifferent between the two actions when the parameter takes the value of 2. When

the agent keeps playing a = 1, the parameters 1 and 3 fit the data equally well on

average, so their log-posterior ratio is a random walk which a.s. crosses 1 infinitely

often. However, the high action a = 3 is strictly optimal against any belief that assigns

a higher probability to ω = 1 than ω = 3. Hence, the high action must be played
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qθ(1|a, ω) ω1 ω2

a1 0.5 0.3

a2 0.6 0.7

a3 0.49 0.29

qθ
∗
(1|a, ω) ω∗

a1 0.5

a2 0.5

a3 0.5

Table 5: Initial model θ and competing model θ′ in Example 5.

infinitely often almost surely.

Example 5 (Another type of traps). Consider an agent who chooses from A =

{a1, a2, a3} and observes outcomes from Y = {0, 1}. The true DGP prescribes yt = 1

with probability 0.5 for all actions. Given action at and a realized outcome yt, the agent

obtains a flow payoff of yt + h(at), where h(a
1) = 0, h(a2) = −0.3, and h(a3) = 0.01.

The agent holds an initial model θ and considers a correctly specified competing model

θ′ as described in Table 5, and she employs a switching threshold of α = 3. Under

model θ, both a1 and a3 are optimal when πθt (ω1) ≥ 1/3, and a2 is optimal when

πθt (ω
1) ≤ 1/3. Therefore, δa1 is a SCE with a supporting belief δω1 , but it is not quasi-

strict because a2 is also optimal in equilibrium. Under model θ′, a3 is the uniquely

optimal action at all beliefs. As illustrated below, action a2 functions as a trap that

prevents the “switcher” agent from ever playing a1 under model θ.

Suppose the agent starts with a prior with πθ0(ω
1) = 1/3 such that she plays a2 in

period 0. In addition, suppose the agent adopts a pure policy under θ that prescribes

a1 for a countable set of beliefs A, where

A =

{
π ∈ ∆Ωθ : π(ω1) ≥ 1

3
and

π(ω1)

π(ω2)
=

1

2
· 4
3
·
(
5

7

)m
·
(
5

3

)n
for some m,n ∈ N

}
.

In period t = 0, the agent either (1) draws y0 = 0 and then switches to model θ,

followed by at least one period of playing a3, or (2) draws y0 = 1 and continues with

a2 in the next period. In scenario (1), the agent’s belief πθ2 is such that

either
πθ2(ω

1)

πθ2(ω
2)

=
1

2
· 4
3
· 51
71

or
πθ2(ω

1)

πθ2(ω
2)

=
1

2
· 4
3
· 49
29
,

depending on the outcome realization y1. Therefore, the agent will never play a1 in

future periods. Meanwhile, in scenario (2), the agent’s belief is such that

either
πθ2(ω

1)

πθ2(ω
2)

=
1

2
· 6
7
· 6
7
or

πθ2(ω
1)

πθ2(ω
2)

=
1

2
· 6
7
· 4
3
,
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depending on the outcome realization y1. Therefore, the agent’s belief πθt will remain

outside of A and thus she will never play a1 in future periods.

While the switcher never converges to the SCE δa1 , a θ-modeler converges to the

SCE with positive probability. To see why, first notice that a θ-modeler also starts by

playing a2. However, upon drawing y0 = 0, the agent’s belief πθ1 enters A and thus she

chooses a1 thereafter as long as her belief assigns probability weakly higher than 1/3 to

state ω1. Since playing a1 is self-confirming with a supporting belief δω1 , the previous

event indeed occurs with positive probability. Therefore, the SCE is p-absorbing.

C.2 Micro-Foundation for the Application in Section 5.2

In this subsection I specify the payoff structure for the news consumption problem in

Application 5.2, which provides a micro-foundation for Assumption 3.

To do this, we first extend the learning framework introduced in Section 3 to allow

for an unobserved payoff that may depend on an unknown state. That is, besides the

observable payoff jointly determined by the action and the random outcome u(at, yt),

there may exist an unobserved payoff ũ(at, ω) that depends on the action and a fun-

damental state ω ∈ Ω. Under any subjective model θ, the agent maximizes the sum

of the observed and the unobserved payoff given her belief over the fundamental state

and possibly other parameters. This maximization gives rise to an optimal-action cor-

respondence Aθm : ∆Ωθ ⇒ A, which we can use to define a self-confirming equilibrium.

All results in Section 4 remain unchanged.

Subscribing to media outlets provide entertainment value. Media outlets produce

higher quality news reports if the story is aligned with their political leaning. If the

agent subscribes to media aL, she earns an emotional utility of 1 iff she receives a l

story; similarly, if she subscribes to media aR, she earns an emotional utility of 1 iff

she receives a r story. If she subscribes to the neutral media aM , she earns a constant

emotional payoff of 0.65.

Subscribing to media outlets also provide valuable information. In additional to

subscribing to a media outlet at, the agent takes an outside action vt ∈ {vL, vM , vR}
upon receiving the story yt. The agent earns a payoff of 1 if she takes vL in state ωL

and vR in state ωR, but in state ωM she earns a constant payoff of 0.5 by taking any

action. Note that it is optimal for the agent to follow the story she receives in each

period.

In Table 6, I summarize the subjective expected total payoffs associated with each

action under model θ and model θ′. It is then straightforward to verify Assumption 3.
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Eθ(payoff|a, ω) ωL ωM ωR

aL 1.4 1.1 1

aM 1.25 1.15 1.25

aR 1 1.1 1.4

E θ̂(payoff|a, ω) ωL ωR

aL 1.2 1

aM 1.15 1.15

aR 1 1.2

Table 6: Expected payoffs under model θ (left) and expected payoffs under model θ′

(right).

θ ω1 ω2

(x1, x2, x3, x4) (1, 1, 1, 0) (1, 1, 0, 1)

θ1 ω1′ ω2′

(x1, x2, x3, x4) (1, 0, 1, 0) (1, 0, 0, 1)

θ2 ω1′′ ω2′′

(x1, x2, x3, x4) (0, 1, 1, 0) (0, 1, 0, 1)

Table 7: Model predictions about the variable means in Example 6

C.3 Examples Omitted from Section 6

I provide three examples below to substantiate the observation in Footnote 30 and

Footnote 31. Example 6 presents a scenario in which θ persists against θ1 and θ2

separately but does not persist against {θ1, θ2}, while Example 7 shows an opposite

scenario. Example 8 constructs a setting where the true model is not globally robust

when the number of competing models K exceeds α + 1.

Example 6 (Persisting against θ1 and θ2 but not both simultaneously). Let x1 and x2

be two i.i.d. normally distributed variables, both with mean 0 and variance 1. Suppose

x3 and x4 are also i.i.d. normally distributed but with mean 1 and variance 1. Suppose

the agent can play one of two actions in each period, A = {1, 2} and uses subjective

models to learn about the mean of each element in (x1, x2, x3, x4). Her flow payoff

is given by a · (x4 − x3). Hence, she would like to play a = 2 if x4 > x3 and play

a = 1 if x3 > x4. However, x1 and x3 are only observable when a = 1, while x2 and

x4 are only observable when a = 2. That is, the outcome y is given by (x1, x3) when

a = 1 and given by (x2, x4) when a = 2. She entertains an initial model θ and two
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θ ω1 ω2

a1 -1 1

a2 -2 1/2

θ1 ω′

a1 -1

a2 -1

θ2 ω′′

a1 2

a2 2

Table 8: Model predictions about the mean of y in Example 7

competing models, {θ1, θ2}, each of which is equipped with a binary parameter space.

The predictions of each model are summarized by the following table. The predicted

means are independent of the actions taken.

Notice that there are two strict (and thus p-absorbing) Berk-Nash equilibria under

θ: (1) a = 1 is played w.p. 1, supported by the belief that assigns probability 1 to ω1;

(2) a = 2 is played w.p. 1 , supported by the belief that assigns probability 1 to ω2.

First observe that θ persists against θ1 at a prior πθ0 that assigns sufficiently high belief

to ω1. This follows from the fact that the likelihood ratio between θ and θ1 is always 1

when a = 1 is played, and that the equilibrium is p-absorbing. Analogously, θ persists

against θ2 at a prior πθ0 that assigns sufficiently high belief to ω2. However, notice that

θ does not persist against {θ1, θ2} at any priors and policies, because regardless of the

actions taken by the agent, at least one of θ1 and θ2 would fit the data strictly better

than θ, prompting the agent to adopt θ1 and θ2 infinitely often.

Example 7 (Persisting against {θ1, θ2} but not each separately). Let y be a normally

distributed variable with mean 0 and variance 1, whose distribution is independent of

actions. The agent can play one of two actions in each period, A = {a1, a2} = {1, 2}
and uses subjective models to learn about the mean of y. Her flow payoff is given by

a · y. She entertains an initial model θ and two competing models, {θ1, θ2}. Model

θ1 has a single parameter and perfectly matches the true DGP, while models θ and θ2

both have a binary parameter space. The model predictions about y are summarized

by Example 7. Under model θ, the agent plays a1 for all full-support beliefs; under

model θ1 and θ2, a1 and a2 are the strictly dominant actions, respectively.

Suppose the agent’s prior satisfies that πθ0(ω
1) = 1 − πθ0(ω

0) = 0.5
α

< 1
α
. First

suppose the agent has only one competing model, θ1. Then the agent always plays

a1 irrespective of the model choice and within-model beliefs. By the Law of Large

Numbers, the likelihood ratio between θ1 and θ eventually exceeds α almost surely
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because

ℓt(θ
1)

ℓt(θ)
=

∏t−1
τ=0 q

θ1 (yτ |aτ , ω′)∏t−1
τ=0 q

θ (yτ |aτ , ω1) πθ0 (ω
1) +

∏t−1
τ=0 q

θ (yτ |aτ , ω2) πθ0 (ω
2)

=

∏t−1
τ=0 q

∗ (yτ |aτ )∏t−1
τ=0 1aτ=a1q

∗ (yτ |aτ ) πθ0 (ω1) + ξ(ht)

>

∏t−1
τ=0 q

∗ (yτ |aτ )∏t−1
τ=0

1
α
q∗ (yτ |aτ ) + ξ(ht)

where ξ(ht)∏t−1
τ=0 q

∗(yτ |aτ )
converges to 0 almost surely. Threrefore, θ does not persist against

θ1 under prior πθ0.

However, model θ persists against Θ′ := {θ1, θ2} at prior πθ0. First notice that for

any a0 ∈ A, there exists some y0 sufficiently large such that

ℓ1(θ
2) > α ·max{ℓ1(θ), ℓ1(θ1)}

and thus the agent switches to θ2 in the beginning of period 1. As a result, the agent

plays a1 = a2 in period 1 since it is the strictly dominant strategy under θ2. But then

we could find some sufficiently negative y1 such that the following two inequalities hold:

ℓ2(θ) > α ·max{ℓ2(θ1), ℓ2(θ2)},

πθ2(ω
1) =

πθ0(ω
1)qθ(y0|a0, ω1)qθ(y1|a1, ω1)∑

ω∈{ω1,ω2} π
θ
0(ω)q

θ(y0|a0, ω)qθ(y1|a1, ω)
>

1

α
.

The first inequality implies that the agent switches back to θ in the beginning of period

2. Since the agent plays a1 under model θ and it is a self-confirming equilibrium, the

Bayes factor ℓt(θ2)
ℓt(θ)

remains under α with positive probability. Meanwhile, on the paths

where ℓt(θ2)
ℓt(θ)

≤ α for all t ≥ 3, the agent never switches to θ1 because

ℓt(θ
1)

ℓt(θ)
<
ℓ2(θ

1)

ℓ2(θ)

∏t−1
τ=2 q

∗ (yτ |aτ )∏t−1
τ=2 q

∗ (yτ |aτ ) πθ2 (ω1)
< 1 < α.

Therefore, θ persists against Θ′ = {θ1, θ2} at prior πθ0.

Example 8 (Overfitting). Consider an agent who repeatedly chooses between two ac-

tions, A = {a1, a2}. The true DGP prescribes a uniform distribution over K outcomes

Y = {1, ..., K} for both actions. The agent incurs a loss of −K for the outcome y = 1

while receiving a payoff of 0 from all other outcomes. The agent pays an additional
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cost c > 0 for playing a1 and no cost if she plays a2. Assuming that the agent’s initial

model θ is the true model θ∗, she optimally plays a2 in the first period to avoid the

cost. Suppose the agent evaluates K competing models that I describe below. Each

model θk ∈ {θ1, ..., θK} has a single parameter ωk. When a1 is played, model θk agrees

with θ, correctly predicting a uniform outcome distribution. When a2 is played, model

θk diverges from θ. Specifically, for any k > 1, θk predicts

qθ
k

(y|a2, ωk) =


1− 1

K
− (K − 1)η if y = k,

1
K
+ η if y = 1,

η if y ∈ Y \ {1, k},

where η is a small positive constant. When k = 1, qθ
k
(·|a2, ωk) is given by

qθ
1

(y|a2, ω1) =

1− (K − 1)η if y = 1,

η if y ∈ Y \ {1}.

Note that model θk predicts that when a2 is played, the outcome k is drawn with

probability near 1. Given there is one such model for every possible outcome, the

agent must switch to one of these competing models upon the first outcome realization

when η is sufficiently small. In particular, if the realized outcome is k, the agent

immediately switches to model θk when

ℓ1(θ
k)

ℓ1(θ)
=

1− 1
K
− (K − 1)η

1
K

> α.

Note that such η exists as K > α + 1. Furthermore, since playing a2 leads to the

outcome y = 1 with probability larger than 1/K under every competing model, once

the switch occurs, the agent finds it optimal to play a1 to avoid the loss associated with

outcome 1 when c is sufficiently small. However, since all models yield the same correct

predictions under a1, the Bayes factors λt remain constant thereafter. Hence, despite

that the agent starts with the true model, the agent becomes permanently trapped

with a wrong model and chooses a suboptimal action.
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