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Abstract

This paper studies which misspecified models are likely to persist when decision-
makers compare them with competing models. The main result characterizes
such models based on two features that can be derived from primitives: the
model’s asymptotic accuracy in predicting the equilibrium distribution of ob-
served outcomes and the “tightness” of the prior around such equilibria. Misspec-
ified models can be robust, persisting against any arbitrary competing model—
including the true model—despite decision-makers observing an infinite amount
of data. Moreover, simple misspecified models equipped with entrenched priors
can be more robust than complex correctly specified models.
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1 Introduction

People use models to guide decisions, but often the models they use are misspeci-

fied. This happens when the decision-maker assigns zero probability to the true data-

generating process, whether out of a need to simplify a complex reality or due to cogni-

tive biases such as overconfidence or correlation neglect. While a growing literature in

economics studies how model misspecification impacts beliefs and actions, much of it

assumes a dogmatic decision-maker who uses a particular misspecified model and never

considers changing it.1 This simplifies the environment in a way that yields tractable

characterizations of long-run behavior, yet it leaves open the question of whether it is

realistic to assume a decision-maker never abandons a misspecified model.

In practice, people often switch models when an alternative is more compelling. For

example, natural scientists shift to a new paradigm if it better fits the data in terms

of accuracy and simplicity (Kuhn, 1962). Likewise, economists adopt a new model

when evidence reveals that the initial model does not account for important economic

forces. Similar examples of model switching occur in everyday life: individuals change

thinking patterns in cognitive behavioral therapy, overcome implicit biases through

introspection, or embrace new political narratives. Moreover, recent experiments show

that goodness of fit is a key consideration in model selection across diverse individuals

(Barron and Fries, 2024; Ambuehl and Thysen, 2024).

If decision-makers are open to switching models, which misspecified models will

persist—and when? Answering these questions is essential for understanding the long-

term implications of model misspecification and for designing effective policy responses.

This paper proposes a novel learning framework to address them. In the framework,

an agent uses a subjective model to learn an unknown fixed data-generating process

(DGP). Each model is a parametric theory of how actions affect the outcome distribu-

tion, with each parameter value predicting a distinct DGP. For example, a monopolist

may adopt a linear consumer demand model, where each pair of parameter values—the

1Examples include: a monopolist trying to estimate the slope of the demand function when the true
slope lies outside of the support of the prior (Nyarko, 1991; Fudenberg, Romanyuk, and Strack, 2017);
agents learning from private signals and other individuals’ actions while neglecting the correlation
between the observed actions (Eyster and Rabin, 2010; Ortoleva and Snowberg, 2015; Bohren, 2016)
or overestimating how similar others’ preferences are to their own (Gagnon-Bartsch and Rosato, 2024);
overconfident agents falsely attributing low outcomes to an adverse environment (Heidhues, Kőszegi,
and Strack, 2018; Ba and Gindin, 2023); a decision-maker imposing false causal interpretations on
observed correlations (Spiegler, 2016, 2019, 2020); a gambler who flips a fair coin mistakenly believing
that future tosses must exhibit systematic reversal (Rabin and Vayanos, 2010; He, 2022); individuals
narrowly focusing their attention on only a few aspects of the state space rather than a complete state
space (Mailath and Samuelson, 2020).
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slope and the intercept—specifies a mapping from production quantities to distribu-

tions of demand. This model is misspecified if the true DGP is excluded, e.g., if actual

demand is nonlinear. Critically, data is endogenously generated, as outcomes depend

on the agent’s actions, which in turn depend on past outcomes and the model in use.

While existing work often focuses on a dogmatic modeler who never revises their

model, I study a switcher who can switch between an initial model and a competing

model across periods. She holds a prior over the parameters within each model, updates

these beliefs as outcomes are realized, and chooses the optimal action under the current

model. To decide whether to switch, the agent tracks the Bayes factor—the likelihood

ratio of the competing model to the initial model given the observed data—and switches

if it exceeds a fixed threshold. She returns to the initial model if the Bayes factor drops

below the inverse of the threshold. A higher threshold makes the switching process

stickier, requiring stronger evidence to justify a switch.

A model persists against a competing model if, with positive probability, the agent

eventually stops switching and uses this model forever. A model is robust if it persists

against a wide range of competing models. I introduce two notions of robustness to

delineate its upper and lower bounds. A model is globally robust if, given a prior

over parameters, it persists against every possible competing model, regardless of that

model’s structure or prior—a strong requirement that, if met, provides a compelling

reason for the model’s long-term survival in any environment. Yet in many settings,

not all competing models are equally plausible. When the agent is conservative or

has limited knowledge, she may only switch to models close to her initial one. This

motivates the notion of local robustness, which requires persistence only against lo-

cal perturbations. Together, these notions provide a framework for comparing the

robustness of models and form a key conceptual contribution of the paper.

As summarized in Table 1, the main results fully characterize both robustness no-

tions using two properties derived from the model’s primitives: asymptotic accuracy

and prior tightness. A model has perfect asymptotic accuracy if it admits a self-

confirming equilibrium (SCE) (Battigalli, 1987; Fudenberg and Levine, 1993) that sat-

isfies a novel stability condition I call p-absorbingness. In an SCE, the agent plays

optimal actions given a consistent belief under which the model’s prediction perfectly

matches the true DGP. Notably, SCEs may involve arbitrarily suboptimal actions if

the model makes incorrect off-path predictions. P-absorbingness further requires that,

with positive probability, a dogmatic modeler using this model eventually plays only

equilibrium actions. Yet asymptotic accuracy alone does not guarantee persistence be-

cause the agent may switch away before her belief converges to the SCE belief. If the
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Notions of robustness

Properties global local

asymptotic accuracy perfect perfect

prior tightness yes no

Table 1: Summary of results.

prior is tight in the sense of being concentrated around p-absorbing SCEs, the model

has high explanatory power throughout the learning process, securing its persistence.

I first characterize which models can be locally or globally robust under at least one

full-support prior. Theorem 1 shows that given any switching threshold above 1, a

model can be globally robust if and only if it can be locally robust, with both notions

reducing to a requirement for perfect asymptotic accuracy. This result provides a

formal learning foundation for the persistence of misspecified models, as they can

be globally robust and persist against any competing model—including the correctly

specified model that contains only the true DGP—despite the agent having infinite

data and continuously comparing models. Although local robustness seems weaker,

the two notions turn out to be somewhat equivalent: any model lacking asymptotic

accuracy can be locally improved by slightly adjusting its predictions toward the true

DGP. Even for an agent reluctant to switch, accumulating evidence eventually forces

the abandonment of a less accurate model.

Theorem 2 then characterizes when, or under which priors, models with perfect

asymptotic accuracy are robust. It highlights the real distinction between global and

local robustness: the former requires prior tightness but the latter does not. The

required level of tightness has a closed-form characterization: the prior probability as-

signed to DGPs involved in p-absorbing SCEs must exceed the inverse of the switching

threshold. Hence, while a higher threshold (i.e., stickier switching) does not expand

the set of robust models, it allows robustness under a broader range of priors. As the

threshold decreases to 1, the prior must fully concentrate on these equilibria, shrinking

the set of both locally and globally robust models (Theorem 3). Additional character-

izations under alternative switching rules or multiple competing models are provided

in the extensions.

The results provide off-the-shelf tools to predict which underlying biases are more

robust in applications—an important step for devising policies to tackle them. In Sec-

tion 5.1, I apply the results to a workhorse model in the literature where the agent

3



misperceives a fundamental (e.g., ability) while learning about another (Heidhues et al.,

2018; Ba and Gindin, 2023; Murooka and Yamamoto, 2023). I show that the asymptotic

accuracy of a misspecified model depends on the direction of belief dynamics under the

model, which can be inferred from how beliefs about different fundamentals affect op-

timal actions. When the action space is discrete, overconfidence in ability leads to pos-

itively reinforcing belief dynamics and convergence to an SCE, while underconfidence

produces negatively reinforcing dynamics and oscillation between non-self-confirming

actions for a wide range of parameters. This suggests that overconfidence needs more

intervention, while underconfidence is more naturally self-correcting.

The characterization also offers fresh insights into how model structure and the

learning environment contribute to model persistence. While all correctly specified

models are asymptotically accurate, only a subset of misspecified models have this

property. However, correct specification does not guarantee prior tightness, which may

be easier to satisfy for misspecified models with small parameter spaces or multiple

SCEs. Paradoxically, some misspecified models can be more robust than correctly

specified models, requiring less tight priors or lower switching thresholds, precisely due

to their extremity and simplicity. In Section 5.2, I apply these insights to a model of

media consumption, showing that a simplistic misspecified model of the world leads

to enduring political polarization. Due to its simplicity, the misspecified model offers

better apparent fit than a correctly specified model and can permanently replace the

latter with arbitrarily high probability.

The remainder of this section reviews related literature. Section 2 provides an

illustrative example, Section 3 introduces the framework, Section 4 presents the main

results, and Section 5 develops two applications. Section 6 discusses extensions, and

Section 7 concludes. Appendix A contains auxiliary results and Appendix B proofs of

the main results. The Online Appendix includes additional results and extensions.

Related Literature. This paper contributes to the literature on learning under mis-

specified models, much of which focuses on analyses where agents adhere to a single

model. Heidhues et al. (2018) argue that if there is convergence to an SCE, the perfect

match between predicted and realized outcomes gives the agent no reason to recon-

sider the model.2 My results formalize how a stable SCE enables a model to be robust

to competing models. Importantly, my dynamic switching framework reveals how en-

vironmental factors, such as the prior and the switching rule, contribute to model

robustness—insights that a static equilibrium analysis cannot provide. Recent work in

2For similar ideas, see also Sargent (1999) and the discussion in Lanzani (2025).
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the literature studies asymptotic beliefs and actions in general learning environments

with active feedback (Bohren and Hauser, 2021; Frick, Iijima, and Ishii, 2023; Esponda,

Pouzo, and Yamamoto, 2021; Fudenberg, Lanzani, and Strack, 2021). The main tech-

nical contribution here is to integrate model switching into active learning. Since the

agent considers multiple models, one must track multiple endogenous belief processes

and a Bayes factor process that dynamically interacts with all of them.

This paper also contributes to the growing literature on why and when misspecified

models persist. Gagnon-Bartsch, Rabin, and Schwartzstein (2023) study model stabil-

ity when the agent considers a correctly specified alternative. In their setting, data is

exogenous, but the agent only attends to the data she deems decision-relevant to the

current model. This contrasts with my framework where data is endogenous but the

agent uses all of it. Cho and Kasa (2015) similarly study model switching with en-

dogenous data and characterize “dominant” models based on the rate of escaping from

their unique SCE. My results instead emphasize how initial conditions affect model

switching before convergence to the SCE.3 Apart from goodness-of-fit tests, some pa-

pers adopt payoff-based criteria. For example, Montiel Olea, Ortoleva, Pai, and Prat

(2022) characterize the “winning” model in a contest setting and identify a trade-off

between model fit and model estimation uncertainty when the dataset is small. I com-

plement their finding by showing that a similar trade-off between asymptotic accuracy

and prior tightness exists in a model-switching framework with infinite data.4

A rich literature in decision theory studies agents with multiple models or priors, of-

ten incorporating aversion to model uncertainty, a feature absent in my setting (Gilboa

and Schmeidler, 1989; Hansen and Sargent, 2001). Ortoleva (2012) axiomatically char-

acterizes the Hypothesis Testing model, where the agent reconsiders her prior only

when it assigns sufficiently low probability to the observed event, and then switches if

3The difference in our results stems from the different updating and switching rules we consider.
Their agent uses a constant gain algorithm for parameter updates—which features recurrent “large
deviations”—and the Lagrange multiplier test for model selection—which is calibrated so that param-
eter drifts toward the SCE do not trigger model switches.

4Other examples include Fudenberg and Lanzani (2022) who study evolutionary dynamics where
small population mutations expand the original model. Similar to my results, they show that any
model admitting an SCE resists all such mutations. However, the underlying mechanisms differ: their
result relies on the fact that an SCE remains an equilibrium in the expanded model, allowing all
individuals to maintain the same behavior and receive the same payoff. In contrast, in my framework,
a p-absorbing SCE enables a model to persist against competing models that induce better-performing
actions but is asymptotically less accurate. He and Libgober (2020) consider multi-agent strategic
games and find that misspecification can lead to beneficial misinferences. Frick, Iijima, and Ishii
(2024) find that some biased learning rules can outperform Bayes’ rule by enabling faster learning.
See also Eliaz and Spiegler (2020); Levy, Razin, and Young (2022) for more related work.
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another prior fits the data better, i.e., the Bayes factor exceeds 1. In contrast, switch-

ing in my framework occurs whenever the Bayes factor exceeds α, regardless of the

probability assigned to any single event.

This paper also connects to recent work on model persuasion, where persuaders

exploit agents by proposing better-fitting models (Galperti, 2019; Schwartzstein and

Sunderam, 2021; Aina, 2025). While those studies focus on one-shot information en-

vironments, my results show that even with continuous model comparison and infinite

data, agents can still be steered toward misspecified models.

Finally, this paper contributes to the statistics literature on model selection. Statis-

ticians have developed various criteria that differ in computation cost and penalty

for overfitting.5 The Bayes factor is known to inherently penalize model complex-

ity, as priors spread over a larger parameter space reduce marginal likelihoods (Kass

and Raftery, 1995). Hence, when data are limited, different priors can lead to differ-

ent model choices and predictions—a well-known critique of Bayesian model selection

(Robert et al., 2007). While this issue disappears with infinite data in exogenous-

data environments, this paper shows that in endogenous-data environments, the prior

continues to shape model choices and predictions, affecting long-term behavior.

2 Illustrative Example

I begin with a simple example to illustrate how some misspecified models are more

able to persist than others. Consider an artist who chooses how much effort to exert

in creating art for sale, at ∈ {0, 1, 2} for t ≥ 0, with cost at(at + 0.5). Sales revenue

is yt = (at + b)ω + ϵt, where b is the artist’s ability, ω is a fixed market demand, and

ϵt is a noise term with a known distribution. The true values are b∗ = 1 and ω∗ = 2.

Effort and market demand are complements: a stronger market incentivizes greater

effort. Suppose the artist knows the structure of the revenue function but is uncertain

about market demand. She holds a nondegenerate prior over ω and chooses effort each

period to maximize expected sales. If she knew her true ability, she could correctly infer

demand over time and eventually settle on the optimal effort level, a∗ = 1. However, the

artist has a potentially biased self-perception, assigning probability 1 to b̂ ∈ {0, 1, 2},
5Other criteria include the Likelihood Ratio Test (LRT), Akaike information criterion (AIC),

Bayesian information criterion (BIC), and cross-validation (Akaike, 1974; Stone, 1977; Schwarz et al.,
1978). AIC and BIC approximate the Bayes factor under certain parametric and prior assumptions;
cross-validation, though insensitive to the prior, often requires additional regularization to control
complexity.
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where b̂ = 2 represents overconfidence and b̂ = 0 represents underconfidence.6 Each

self-perception b̂ ̸= b∗ gives rise to a misspecified model of how sales are generated:

the artist systematically over- or underestimates expected sales. Now, suppose that

the artist also considers a competing model that correctly sets b∗ = 1, and switches to

it if it fits the sales data sufficiently better. Are underconfidence and overconfidence

equally likely to persist? My results reveal an interesting asymmetry: overconfidence is

more robust than underconfidence. This aligns with extensive psychological evidence

that overconfidence is generally more prevalent than underconfidence (Svenson, 1981).

Consider first an underconfident artist who believes her ability is low, b̂ = 0. Under-

confidence causes the artist to attribute higher-than-expected sales to strong market

demand, leading her to increase effort. To illustrate, suppose the artist starts with

the objectively optimal effort â1 = 1; based on observed sales, her belief drifts toward

ω̂1 = 4. This belief induces her to choose â2 = 2. Critically, this change in effort

partially corrects her overestimation of demand. Because effort and demand are com-

plements, the marginal return to demand increases with effort, allowing the artist to

explain sales with a lower demand estimate, ω̂2 = 3. This new belief makes â1 optimal

again, resulting in a negative feedback loop:

(â1 + b∗) · ω∗ = (1 + 1) · 2 = (â1 + b̂) · ω̂1 = (1 + 0) · 4, (1)

(â2 + b∗) · ω∗ = (2 + 1) · 2 = (â2 + b̂) · ω̂2 = (2 + 0) · 3. (2)

The artist’s effort perpetually cycles between 1 and 2, with no single belief about

demand fully explaining the sales data; i.e., the initial model lacks a self-confirming

equilibrium. By contrast, the correctly specified competing model achieves perfect

accuracy asymptotically. Over time, the artist gathers enough evidence to reject her

underconfidence and switch to the competing model.

Now, let’s turn to the overconfident artist who believes her ability is b̂ = 2 while

also considering the correct competing model. The artist attributes disappointing

sales to weak demand and exerts low effort. This low effort further lowers her belief

about demand: since the marginal return to demand decreases, she must underestimate

demand even more to rationalize poor sales. Such positively reinforcing dynamics

eventually drive her belief to ω̂ = 1 and effort to â = 0. This steady state forms a

6This assumption captures the idea that individuals often commit fundamental attribution er-
rors and are slower to change self-perceptions than beliefs about external factors (Miller and Ross,
1975).Heidhues et al. (2018); Ba and Gindin (2023) use the same assumption and show that both
over- and underconfidence distort demand inferences and lead to inefficient effort choices in the long
run.
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self-confirming equilibrium: zero effort is optimal given weak demand, and the belief

perfectly aligns with the sales data:

(â+ b∗) · ω∗ = (0 + 1) · 2 = (â+ b̂) · ω̂ = (0 + 2) · 1. (3)

In the steady state, the initial model with overconfidence and the competing model

make equally accurate predictions, and therefore the artist has no reason to switch.

Yet this isn’t the whole story. While equilibrium analysis suggests that overconfidence

can persist, the agent may switch models before convergence. My dynamic framework

addresses this concern. I show that for overconfidence to be globally robust—i.e., to

persist against the correct model and others—her prior must assign sufficiently high

probability to ω̂ = 1, with the exact threshold depending on the model-switching rule.

In sum, this example illustrates how some misspecified models are more able to

persist than others. I now turn to the general framework to systematically identify

which ones and under what conditions.

3 Framework

3.1 Basic Setup

Objective Environment. In each period t = 0, 1, 2, ..., the agent chooses an action at

from a finite set A and observes an outcome yt drawn from Y that is either a Euclidean

space or a compact subset of it. Both A and Y have at least two distinct elements.

Given at, the outcome yt is independently drawn from distribution Q∗ (·|at) ∈ ∆Y . The

true data-generating process (DGP), {Q∗(·|a)}a∈A ∈ (∆Y)|A|, remains fixed. At the

end of period t, the agent obtains a flow payoff ut := u (at, yt), where u : A × Y → R
is known.7 Let ht := (aτ , yτ )

t
τ=0 denote the observable history at the end of period t,

with Ht = (A× Y)t+1 denoting the set of all such histories.

Assumption 1. For all a ∈ A: (i) Q∗ (·|a) is absolutely continuous w.r.t. a common

measure ν, and the Radon–Nikodym derivative q∗ (·|a) is positive and continuous; (ii)

u (a, ·) ∈ L1 (Y ,R, Q∗ (·|a)).8

By Assumption 1(i), the true DGP has a positive, continuous density q∗(·|a) for

each action. When Y is discrete, it is a probability mass function with ν as the

7The true DGP may also directly enter the payoff, as long as this part of the payoff is unobservable
so that the outcome is the only source of information about the true DGP.

8Lp (Y,R, ν) denotes the space of all functions g : Y → R s.t.
∫
|g (y)|p ν (dy) < ∞.
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counting measure; when Y is continuous, it is a probability density function with ν as

the Lebesgue measure. Assumption 1(ii) ensures that the objective expected period-t

payoff, ut :=
∫
Y u (at, y) q

∗ (y|at) ν (dy), is defined, and that an optimal action exists.

Subjective Models. The agent relies on subjective models to guide her action

choices. A model, generically denoted by θ, is defined by a set of DGP predictions,

{Qθ(·|a, ω)}a∈A,ω∈Ωθ , where each parameter ω in the finite parameter space Ωθ predicts

a DGP {Qθ(·|a, ω)}a∈A.9 Without loss of generality, no two distinct parameter val-

ues within a model yield the same predicted DGP. The agent only considers models

satisfying Assumption 2, which together form the model universe Θ ⊂ P
(
(∆Y)|A|).

Assumption 2. For each a ∈ A and ω ∈ Ωθ: (i) Qθ (·|a, ω) is absolutely continuous

w.r.t. measure ν, and the Radon-Nikodym derivative qθ (·|a, ω) is positive and contin-

uous; (ii) u (a, ·) ∈ L1
(
Y ,R, Qθ (·|a, ω)

)
; (iii) there exists ra ∈ L2 (Y ,R, ν) such that

ra is continuous and
∣∣∣ln q∗(·|a)

qθ(·|a,ω)

∣∣∣ ≤ ra (·) a.s.-Q∗ (·|a).

Assumption 2(i) and (ii) mirror Assumption 1, ensuring well-defined densities and

expected payoffs for any model prediction. Assumption 2(iii) bounds the log-likelihood

ratio between any prediction and the true DGP, ruling out models whose predictions

assign zero probability to events that occur with positive probability, i.e., surprises.

This ensures that the agent can update beliefs using Bayes’ rule within any model and

apply the Bayes factor rule introduced later to switch models.

A model in Θ is correctly specified if its predictions include the true DGP, i.e.,

∃ω ∈ Ωθ such that q∗ (·|a) ≡ qθ (·|a, ω) ,∀a ∈ A, and misspecified otherwise. A model

is larger if it has a larger parameter space. The smallest correctly specified model,

denoted by θ∗, consists only of the true DGP and is referred to as the true model.

3.2 The Switcher’s Problem

The agent considers a finite set of models, Θ† ⊆ Θ. A dogmatic modeler only uses a

single model, and is a θ-modeler when Θ† = {θ}. My focus is on a switcher, who uses

one model at a time but may switch between models across periods. The main analysis

focuses on the two-model case, Θ† = {θ, θ′}, with extensions to multiple competing

models discussed in Section 6. A switcher’s learning environment is defined by the

quadruple E = (θ, θ′, πθ
0, π

θ′
0 ), where θ is the initial model, θ′ is the competing model,

9A finite parameter space ensures that any full-support prior assigns positive probability mass to
each prediction in the model. This assumption simplifies the main characterization but can be relaxed
for most results (see Online Appendix F.5).
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and πθ
0 ∈ ∆Ωθ and πθ′

0 ∈ ∆Ωθ′ are the agent’s priors over the models’ parameters.

Without loss of generality, all priors have full support. The model chosen in period t is

denoted by mt ∈ Θ†, with the initial choice set to m0 = θ. I now describe the sequence

of events in each period t ≥ 0.

Operating within a model. For t ≥ 1, the agent first updates her beliefs over

parameters within each model using Bayes’ rule and history ht−1. This generates two

recursive belief processes πθ
t and πθ′

t , where

πθ
t (ω) :=

πθ
t−1(ω)q

θ(yt−1|at−1, ω)∑
ω′∈Ω πθ

t−1(ω
′)qθ(yt−1|at−1, ω′)

,∀ω ∈ Ωθ, (4)

and πθ′
t is updated analogously.

At t ≥ 0, the agent chooses an action to maximize the expected flow payoff under

her current model mt and belief πmt
t . She follows a pure policy under θ, denoted by f θ,

a selection from the correspondence of myopically optimal actions, Aθ
M : ∆Ωθ ⇒ A.10

The policy under θ′ is defined analogously by f θ′ . While the agent is assumed to be

myopic here, in Section 6 I show that most results extend to a forward-looking agent.

Switching across models. Upon observing yt, the agent selects the model for the

next period, mt+1. To guide this decision, she computes the Bayes factor λt, which

compares how well the two models explain the observed data, ht. Specifically, it is

defined as the ratio of the marginal likelihoods of the data under θ′ and θ:

λt := ℓt(θ
′)/ℓt(θ), (5)

where ℓt(θ) :=
∑

ω∈Ωθ πθ
0(ω)ℓt(θ, ω) is the marginal likelihood of the data under model

θ, and ℓt(θ, ω) :=
∏t

τ=0 q
θ(yτ |aτ , ω) is the likelihood conditional on parameter ω. The

marginal likelihood ℓt(θ) is the probability of observing (y0, . . . , yt) given (a0, . . . , at)

in model θ. For t ≥ 1, the agent can compute λt recursively:

λt = λt−1 ·
∑

ω′∈Ωθ′ πθ′
t (ω′) qθ

′
(yt|at, ω′)∑

ω∈Ωθ πθ
t (ω) q

θ (yt|at, ω)
. (6)

That is, the agent updates λt by comparing how well each model explains the most

recent outcome, weighted by the current posterior.

The agent then compares λt to a fixed switching threshold α ≥ 1. If mt = θ, the

agent switches to mt+1 = θ′ when λt > α; if mt = θ′, the agent switches back to

10Actions in Aθ
M (πθ

t ) maximize the expected flow payoff,
∑

ω∈Ωθ πθ
t (ω)

∫
y∈Y qθ(y|a, ω)u(a, y)ν(dy).
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mt+1 = θ when λt < 1/α. When 1/α ≤ λt ≤ α, the evidence is insufficient for a

switch, and she retains the current model, mt+1 = mt. Thus, the threshold α controls

switching stickiness, with a larger α requiring stronger evidence to justify switching.

3.3 Persistence and Robustness

Given a learning environment E = (θ, θ′, πθ
0, π

θ′
0 ), the agent eventually either settles on

one model or oscillates forever. I focus on whether the initial model eventually persists.

Definition 1. Model θ persists against θ′ at priors πθ
0 and πθ′

0 if, given E = (θ, θ′, πθ
0, π

θ′
0 ),

there exists T ≥ 0 such that, with positive probability, mt = θ for all t ≥ T .11

While this definition does not speak to the probability’s magnitude or which models

are used in the short run, it sets a minimal requirement for long-run survival. Note

that persistence is prior-sensitive: a model may persist against a competing model at

some priors but not others. This is because priors impact model fit either directly by

weighting likelihoods and indirectly by affecting the agent’s behavior and the outcome

distribution. Persistence is also relative: a model may persist against one competing

model but not another.12 Since the choice of competing models and priors is often

context-dependent and hard to predict, I introduce notions of robustness, i.e., the

ability to persist against a wide range of models with varying priors.

The scope of robustness depends on the set of admissible competing models and

priors, particularly their distance from the initial model and prior, which defines the

allowable step size of switching. I introduce two notions of robustness: global robustness

permits unlimited step size, while local robustness is restricted to minimal step size.

Formally, a model θ is globally robust at a given prior if it persists regardless of the

competing model θ′ and the prior assigned to θ′.

Definition 2 (Global robustness). Model θ is globally robust at prior πθ
0 if θ persists

against every competing model θ′ ∈ Θ at πθ
0 and πθ′

0 for every πθ′
0 ∈ ∆Ωθ′ .

In contrast, local robustness requires that there exist ϵ > 0 such that the model

persists against nearby models with nearby priors within the relevant ϵ-neighborhoods.

Hence, a locally robust model persists as long as the agent considers small changes to

the model; otherwise, some local perturbation will eventually replace it. With models

11For a definition of the underlying probability space, see Appendix A.1.
12Another property of persistence is that it is not antisymmetric. It is possible for model θ to

persist against model θ′, while θ′ simultaneously persists against θ under the same set of priors.
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defined as finite sets of DGPs, the distance between models, d, is naturally defined by

the Hausdorff distance between their sets of DGPs, where the distance between two

DGPs is measured by the maximum Prokhorov distance between their implied outcome

distributions across actions. The use of the Hausdorff distance ensures that small per-

turbations of a misspecified model remain misspecified. I define an ϵ-neighborhood of

model θ as Nϵ (θ) := {θ′ ∈ Θ : d(θ, θ′) < ϵ} . Since πθ
0 and πθ′

0 correspond to distribu-

tions over DGPs, their distance can also be measured by the Prokhorov distance. With

an abuse of notation, the ϵ-neighborhood of prior πθ
0 within the set of possible priors

for θ′ is N θ,θ′
ϵ (πθ

0) :=
{
πθ′
0 ∈ ∆Ωθ′ : d(πθ

0, π
θ′
0 ) < ϵ

}
. See Appendix A.2 for details.

Definition 3 (Local robustness). Model θ ∈ Θ is locally robust at prior πθ
0 if there

exists ϵ > 0 such that θ persists against every competing model θ′ ∈ Nϵ(θ) at priors π
θ
0

and πθ′
0 for every πθ′

0 ∈ N θ,θ′
ϵ (πθ

0).

3.4 Discussion of Assumptions

Before presenting the results, I discuss several key assumptions of the framework.

Why switching instead of averaging? Since the agent is already considering mul-

tiple models, one might ask why she does not maintain a Bayesian belief over them

and aggregate their predictions. First, the framework already allows for nested mod-

els: if the agent starts off with a “hypermodel” encompassing multiple sub-models,

this effectively serves as her initial model. However, as Savage (1972) notes, Bayesian-

ism is a reasonable description of decision-making only within “modest little worlds,”

and it is “utterly ridiculous” to expect people to start with “a model of everything.”

Second, while the agent updates both models for comparison purposes, combining mul-

tiple models to guide decisions is fundamentally different. Doing so requires aggregat-

ing predictions across structurally distinct models, which increases cognitive demands

and working memory load.13 Moreover, some models rest on conceptually incompat-

ible assumptions—e.g., geocentric vs. heliocentric models or liberal vs. conservative

worldviews—making it cognitively difficult to reason across them simultaneously.

Why the Bayes factor rule? I assume that the agent evaluates model fit using

Bayes factors, a choice that is primarily positive rather than normative.14 Recent ex-

13Using multiple models is particularly demanding for a forward-looking agent. She must weigh
the immediate payoffs of each action under every model, anticipate how the resulting outcome will
update her belief across models and affect future payoffs, and aggregate these across models.

14In simple settings where the agent receives one-shot information and payoffs depend only on the
model choice itself and not posteriors (e.g., if each model prescribes a single action), the optimal
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perimental evidence finds that individuals frequently select the best-fitting model as

indicated by the Bayes factor (Aina and Schneider, 2025; Barron and Fries, 2024). In

addition, the Bayes factor rule has intuitive behavioral interpretations. First, when

α = 1, it is equivalent to selecting the model with the higher posterior probability of

containing the true DGP, under the assumption of a uniform prior. Second, it cap-

tures the models’ cumulative predictive performance. The agent can be thought of

as receiving predictions from two experts, each using a different model, and choosing

which to follow based on how well their predictions match outcomes over time. Lastly,

the Bayes factor can be easily applied to any models without further parametric as-

sumptions. Due to its Bayesian foundation and ease of use, it has been widely used

in recent work on model-based learning and persuasion (Schwartzstein and Sunderam,

2021; Aina, 2025; Galperti, 2019).

An alternative worth considering is the Likelihood Ratio Test (LRT), which com-

pares models based on the ratio of their maximized likelihoods. That is, the agent

computes λmax
t := ℓmax

t (θ′)/ℓmax
t (θ), where ℓmax

t (θ) := maxω∈Ωθ ℓt(θ, ω) and ℓmax
t (θ′) :=

maxω′∈Ωθ′ ℓt(θ
′, ω′). Since λmax

t lacks a recursive structure, the agent must recompute

the maximum likelihood estimates using all available data in each period, making it

less computationally efficient and less plausible for a boundedly rational agent. More

importantly, because the LRT ignores beliefs, it can favor a model that contains a

better-fitting DGP even if that DGP was assigned infinitesimal probability, which of-

ten leads to unintuitive behavior. For example, in model–expert analogy, the LRT

could favor an expert who has consistently underperformed in the past.15 Section 6

formally compares results under the LRT and the Bayes factor rule.

Why stickiness? I allow the agent to exhibit switching stickiness, captured by α ≥ 1.

Stickiness is well observed in reality and can stem from a variety of causes, such as

conservatism, concerns about overreacting to noise, or the cognitive and physical costs

associated with model switching. In the statistics literature, Kass and Raftery (1995)

suggest a threshold of 20 as the standard for “strong evidence”. One important goal

switching rule indeed compares the Bayes factor to a fixed threshold. In more complex environments
like the one considered here, characterizing the optimal switching rule is challenging and dependent
on the decision problem.

15Suppose that the agent flips a potentially biased coin, with two “experts”, θ and θ′, providing
predictions in every period. Expert θ consistently predicts a tails probability of 2/3, while expert θ′

has a uniform prior over the tails probability being either 1/4 or 3/4. If the coin lands on tails twice in
a row, the agent should intuitively favor the expert who has consistently assigned a higher probability
to tails. Note that expert θ′ predicts a tails probability of 1/2 and 5/8 for the first two periods—both
lower than 2/3. While the Bayes factor indeed favors θ, the LRT instead favors θ′ because its MLE
prediction 3/4 is higher than 2/3.
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of this paper is to examine the implications of stickiness for model persistence.

4 Main Results

4.1 Which Models Can Be Robust?

I first characterize which models can be locally or globally robust for at least one

prior. To establish a necessary condition for global robustness, I begin with the case

where the competing model is correctly specified. A correctly specified model assigns

probability 1 to DGPs that correctly predict the outcome distribution in the limit

(Easley and Kiefer, 1988). Therefore, any model that persists against it must also

achieve perfect accuracy asymptotically. This implies that the agent converges to a

self-confirming equilibrium (SCE ), where she chooses myopically optimal actions based

on a consistent belief that ensures that the model prediction fully aligns with the true

outcome distribution.16

Definition 4. A strategy σ ∈ ∆A is a self-confirming equilibrium (SCE) under model

θ if there exists a supporting belief πθ ∈ ∆Ωθ such that: (i) σ is myopically optimal

against πθ, σ ∈ ∆Aθ
M(πθ) and (ii) πθ is consistent with the true DGP at σ, qθ(·|a, ω) ≡

q∗(·|a) for all a ∈ supp(σ) and all ω ∈ supp(π).

But persisting against a correct model requires more than the existence of an SCE;

the SCE must also be reachable and stable. In particular, the agent should, with

positive probability, eventually play only the actions in the equilibrium support; if

actions outside the support were played infinitely often, the Bayes factor would diverge

to infinity, triggering a switch. Since a switcher who adopts θ forever will eventually

behave like a θ-modeler, this stability must also hold for a θ-modeler. I term this

stability p-absorbingness, where “p” indicates that the strategy’s support is absorbing

with positive probability.17

16By Definition 4, equilibrium beliefs are restricted to being unitary (Fudenberg and Levine, 1993);
i.e., a single belief πθ must rationalize every action in supp(σ). This is needed because, if model θ
persists against a correctly specified model, the agent’s beliefs must converge. Otherwise, continual
belief updating will eventually cause the Bayes factor to exceed the switching threshold almost surely
(see Lemma 3 in Appendix A).

17P-absorbingness differs from other stability notions in the literature in that it does not require
convergence of the action sequence or frequency (Esponda et al., 2021; Fudenberg et al., 2021). See
Online Appendix D.1 for an example of a p-absorbing SCE where a θ-modeler’s actions never converge,
and Online Appendix D.2 for an example of an SCE that fails to be p-absorbing.
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Definition 5. Strategy σ ∈ ∆A is p-absorbing under θ if there exists a full-support

prior πθ
0 and some T ≥ 0 such that, with positive probability, a θ-modeler only plays

actions in supp (σ) for all t ≥ T .

I say a model has perfect asymptotic accuracy or is asymptotically accurate if it

admits at least one p-absorbing SCE. Lemma 1 shows that perfect asymptotic accuracy

is necessary for a model to persist against a correctly specified model.

Lemma 1. If model θ persists against a correctly specified model θ′ at some priors πθ
0

and πθ′
0 , then there exists a p-absorbing SCE under θ.

While this may initially appear to be a weak necessary condition for global robustness—

and too strong for local robustness—surprisingly, Theorem 1 shows that if switching

exhibits stickiness, perfect asymptotic accuracy is both necessary and sufficient for

global and local robustness.

Theorem 1. Suppose α > 1. Then the following statements are equivalent:

(i) Model θ is globally robust for at least one (full-support) prior.

(ii) Model θ is locally robust for at least one (full-support) prior.

(iii) There exists a p-absorbing SCE under model θ.

The implications of Theorem 1 are fourfold. First, it provides a formal learning

foundation for asymptotically accurate misspecified models by showing that they can

be globally robust, persisting against arbitrary competing models. Second, it reveals

that global and local robustness are equivalent when the choice of prior is flexible,

though the specific priors supporting each may differ. Thus, if a model is not globally

robust, the agent does not need to search far for an alternative: models vulnerable

to major paradigm shifts are also susceptible to local changes. Third, together with

Lemma 1, Theorem 1 implies that a model that fails to be globally robust cannot

persist if the agent considers any correctly specified model. Finally, the result holds

for all α > 1; i.e., that the set of locally or globally robust models remains unchanged

as switching becomes stickier.

Theorem 1 is proved in the order of (i)⇒(ii)⇒(iii)⇒(i). The first step is immediate,

as global robustness implies local robustness by definition. The second step shows

that local robustness requires perfect asymptotic accuracy. Suppose that model θ does

not admit a p-absorbing SCE. While the agent can only consider local perturbations,

these can be constructed to achieve higher asymptotic accuracy. I construct θ′ as a
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convex combination of θ and the true DGP, staying close to θ. Since Kullback–Leibler

(KL) divergence is convex, θ′ yields strictly lower KL divergence than θ. Though this

difference may be small, the Bayes factor diverges to infinity as more outcomes are

observed, eventually surpassing α and causing the agent to abandon θ.

It remains to show that perfect asymptotic accuracy implies global robustness for

at least one prior. Note that while p-absorbingness ensures that the SCE is reachable

for a θ-modeler from some prior, this does not extend to a switcher with the same

prior, since actions, beliefs, and model choices are endogenous and interdependent. In

particular, the very outcomes that drive a θ-modeler to the SCE can prompt a switch

away from θ, making its adoption self-defeating. Example 1 illustrates this dynamic.

Example 1. An agent repeatedly chooses between two tasks, at ∈ {a1, a2}, to maxi-

mize output yt ∈ {0, 1}, where 0 represents failure and 1 represents success. The true

DGP assigns success rate 0.5 to both tasks, but the agent’s model θ assumes that suc-

cess rates depend on the task and luck ω ∈ Ωθ = {g, b}. Under θ, Task 1 is risky, with

success rate 0.5 under good luck (g) and 0.3 under bad luck (b); Task 2 is safe, with

a fixed success rate of 0.4. Overall, the agent is pessimistic, as success is less likely

under θ than under the true DGP. The agent starts with a uniform prior over luck and

chooses Task 1 when she deems good luck more likely, πθ
t (g) ≥ 0.5. The competing

model θ∗ correctly predicts the true success rate.18 His switching threshold is α = 1.1.

Choosing Task 1, a1, is a p-absorbing SCE under θ, supported by a belief in good

luck, πθ(g) = 1. However, while a θ-modeler converges to a1 with positive probability,

θ does not persist against model θ∗ at πθ
0. To see this, note that a failure on Task 1

leads the agent to switch to the safe task a2, and a success leads to switching to the

more optimistic model θ∗. In the first case, the agent stops updating belief on luck,

which prevents him from returning to a1. Since θ is incorrectly pessimistic about a2,

the agent eventually switches to model θ∗ and enters the second case. Then, switching

back to model θ only happens if the agent observes more failures than successes, but

such a sequence raises the posterior belief in bad luck, leading the agent back to the

safe task a2. Therefore, in either case, the agent must abandon model θ.

Three factors contribute to the self-defeating result. First, model choice and within-

model belief are interdependent, as successes that reinforce a1 also trigger a switch.

Second, the agent’s action and model choices are sensitive to early outcomes due to both

18For simplicity, I assume the agent starts with a uniform prior and takes the true model to be the
competing model. Similar issues arise with other priors where the agent is not indifferent between
tasks, as well as with competing models arbitrarily close to the initial one.
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the prior being distant from the SCE belief and the low switching threshold. Finally,

the safe task acts as an absorbing “trap” in θ, preventing further belief updating and

blocking a return to the SCE.

The proof of Theorem 1 shows that avoiding this trap is possible if the agent’s prior is

close to the SCE belief, because it makes action and model choices less sensitive to early

outcomes. Hence, perfect asymptotic accuracy is sufficient for global robustness for at

least one prior. In the proof, I first derive a stronger property from p-absorbingness:

for any γ ∈ (0, 1), there exists a prior such that a θ-modeler keeps playing the SCE and

stays near the SCE belief with probability at least γ. Second, I apply Ville’s maximal

inequality for martingales to show that the probability of the likelihood ratio between

the competing model and the true model (i.e., the model consisting only of the true

DGP) staying below α is bounded below by a positive constant. Third, I show that

this likelihood ratio approximates the Bayes factor λt when beliefs on θ are close to

the SCE belief. Together, these steps imply that when γ is close to 1, the probability

that the switcher both plays the SCE and does not switch is strictly positive.

Corollary 1 further characterizes robust models based on model primitives. Since

p-absorbingness is defined for a θ-modeler, it depends only on the primitives of model

θ. A simple sufficient condition is that the SCE σ is quasi-strict, meaning that any

action outside its support is strictly suboptimal given the supporting equilibrium belief

πθ, i.e., supp (σ) = Aθ
M(πθ). Then, so long as beliefs are near πθ, actions in supp(σ) are

strictly optimal. Since σ is self-confirming, a θ-modeler will, with positive probability,

stay near the equilibrium belief and play the SCE forever.19 Note that any correctly

specified model admits a quasi-strict SCE.

Corollary 1. Suppose that α > 1. Then model θ is locally or globally robust for at

least one prior if there exists a quasi-strict SCE under θ.

4.2 When Are Models Robust?

Theorem 1 characterizes which models can be robust but not which priors support

them. Identifying these priors is infeasible if there are traps as described in Example 1.

To address this, I introduce two regularity conditions that eliminate such traps.

19The proof of Corollary 1 builds on results from Fudenberg et al. (2021), whose results imply
that a uniformly strict SCE is uniformly stable in the sense that the agent’s actions converge to
the equilibrium action with arbitrarily high probability if the agent’s prior is sufficiently close to the
equilibrium belief. I generalize this to mixed equilibria, showing that any quasi-strict mixed SCE
is p-absorbing for a myopic agent, and any uniformly quasi-strict mixed SCE is p-absorbing for a
forward-looking agent.
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Definition 6. Model θ has no traps if:

(i) It is identifiable: qθ(·|a, ω) ̸= qθ(·|a, ω′) for all distinct ω, ω′ ∈ Ωθ and a ∈ A.

(ii) Any p-absorbing SCE under θ is quasi-strict.

Condition (i) ensures that the DGPs in θ always predict different outcome distribu-

tions, ruling out absorbing actions that stop belief-updating. Condition (ii) requires

that all p-absorbing SCEs be quasi-strict. When (ii) fails, there exists an action that

is optimal given an SCE belief but not self-confirming, which can effectively function

as a trap, meaning that once played, the agent cannot revert to the SCE.20

Under these conditions, Theorem 2 shows that while local robustness under sticky

switching is prior-free, global robustness requires priors to be concentrated around the

p-absorbing SCEs—a property I refer to as prior tightness. Let Cθ denote the set of

consistent parameters in θ; formally, for each ω ∈ Cθ, there exists a p-absorbing SCE

under θ supported by the pure belief δω. The set Cθ is nonempty whenever model θ

admits at least one p-absorbing SCE, as identifiability ensures that any SCE supporting

belief must be pure.

Theorem 2. Suppose that α > 1 and model θ ∈ Θ has no traps. Then:

(i) Model θ is globally robust at prior πθ
0 if and only if πθ

0(C
θ) ≥ 1/α.

(ii) Model θ is locally robust at all (full-support) priors if and only if Cθ ̸= ∅.

Theorem 2 clarifies the fundamental distinction between local and global robust-

ness: limiting the maximal step size of switching does not expand the set of robust

models but allows robust models to persist under a broader range of priors. For global

robustness, prior tightness must satisfy a closed-form condition: πθ
0(C

θ) ≥ 1/α. Thus,

prior tightness and switching stickiness are substitutes: when α is close to 1, the prior

must be tightly concentrated around Cθ, whereas when α is large, the prior can be

more diffuse. In fact, any asymptotically accurate model can be globally robust at a

given prior when switching is sufficiently sticky.

The condition of prior tightness can be met in two ways. The agent may start with

a strong prior in Cθ, or, if the agent is initially agnostic (e.g., follows an ignorance

prior), the parameter space may be small enough so that each parameter value receives

a large weight. In the latter case, Theorem 2 highlights a trade-off between model size

and robustness. While restricting the number of DGPs potentially reduces asymptotic

20See Online Appendix D.3 for an example of this type of traps.
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accuracy, it concentrates the prior, thereby increasing πθ
0(C

θ). Hence, the most robust

models are asymptotically accurate and simple enough that their p-absorbing SCEs

cover all predictions. If every parameter in model θ induces a p-absorbing SCE, i.e.,

Cθ ≡ Ωθ, then global robustness holds at all priors and across all levels of stickiness.

Theorem 2 also implies that correctly specified models are not necessarily more

robust than misspecified ones. While all correctly specified models are locally robust

at all priors and globally robust at some priors or when switching is sufficiently sticky,

only some misspecified models—those with perfect asymptotic accuracy—share this

property. However, misspecified models with a smaller parameter space or more SCEs

can be globally robust at more diffuse priors or lower levels of switching stickiness.

Prior tightness is crucial for global robustness because it plays a key role in shaping

a model’s early predictions and ensures a good fit during belief convergence. This is

most transparent in an exogenous-data environment, where the agent does not choose

actions but passively observes outcomes. In such cases, global robustness requires that

the model be correctly specified, with a prior that assigns at least 1/α probability to

the true DGP. To illustrate, let the competing model be θ∗. By Eq. (5), we have

λt =λt−1 ·
q∗ (yt)

πθ
t (C

θ) q∗ (yt) +
∑

ω ̸∈Cθ πθ
t (ω) q

θ (yt|ω)
. (7)

While θ predicts nearly perfectly as πθ
t (C

θ) → 1, it fits poorly in early periods if πθ
0(C

θ)

is too small. The limit of λt, which reflects the cumulative relative explanatory power of

θ′ and θ, depends on the prior odds assigned to the true DGP, 1/πθ
0(C

θ). A permanent

switch occurs if πθ
0(C

θ) < 1/α. By contrast, local robustness does not require prior

tightness, as competing models close to θ with similar priors produce nearly identical

predictions, which prevents early switches; thus, asymptotic accuracy alone suffices.

The proof of Theorem 2 generalizes this intuition to endogenous-data environments,

where even misspecified models can be globally robust. To prove necessity, I construct

a competing model that replaces the initial model almost surely if the prior tightness

condition is not met. Unlike the true model used in exogenous-data environments,

here the competing model consists of DGPs in Cθ and the true DGP, with the latter

assigned a small prior probability ϵ > 0. As ϵ → 0, λt is asymptotically bounded

below by 1/πθ
0(C

θ), yielding the same prior condition. An interesting insight emerges

from comparing these cases: in exogenous-data environments, the strongest competing

model is a simple and accurate model; in contrast, in endogenous environments, it may

be an extreme and misleading one. Although the competing model constructed here is
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correctly specified, as ϵ approaches zero, the agent is infinitely more likely to converge

to a potentially inefficient SCE associated with a DGP in Cθ than to an objectively

optimal action.

To prove sufficiency, I show that prior tightness allows one to construct a finite

sequence of outcomes that bring the agent’s posterior closer to an equilibrium belief,

where only SCE actions are optimal, while keeping the Bayes factor under α. Compli-

cations arise when multiple p-absorbing SCEs exist, as it is uncertain which equilibrium

belief the agent will converge to and thus the Bayes factor may have different limits.

I show that multiple SCEs relax the prior tightness requirement and it suffices for the

total prior probability of Cθ to exceed α.

Finally, Theorem 3 characterizes robustness when switching is non-sticky (α = 1).

In this case, both local and global robustness require full prior tightness, Cθ = Ωθ.

Theorem 3. Suppose that model θ has no traps and α = 1. Then model θ is locally

or globally robust at any full-support prior πθ
0 if and only if Cθ = Ωθ.

A key insight is that the set of locally robust models and supporting priors shrinks

discontinuously at α = 1, which highlights how stickiness helps more misspecified

models persist. The discontinuity arises because, for any α > 1, the distance between

the competing and initial models, as well as their priors, can be made arbitrarily small

to keep the Bayes factor below α as the agent converges to the SCE. However, at α = 1,

there always exists a nearby model that eventually fits slightly better than the initial

model if Cθ ̸= Ωθ. The proof constructs such a model by preserving most DGPs in θ

while slightly improving the accuracy of one DGP associated with some ω ∈ Ωθ \Cθ.

5 Applications

5.1 Over- and Underconfidence

This section extends the over- and underconfidence analysis in Section 1 to broader

environments. Each period, an agent chooses at from a finite set A ⊂ [a, a] to maximize

flow payoff u(at, yt) = g(at, b
∗, ω∗) + ηt, where g is twice continuously differentiable,

strictly increasing in ability b∗ ∈ [b, b] and in the fundamental ω∗ ∈ [ω, ω] (e.g., market

demand), and strictly concave in a. Noise ηt follows a known mean-zero distribution.

Action and fundamental are either strict complements or strict substitutes; i.e., gaω

is either strictly positive or negative across a, b, ω values. Following Heidhues et al.

(2018), I assume that ability and the fundamental have opposite effects on optimal
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effort, so sgn(gab) ̸= sgn(gaω). The agent’s model assigns probability 1 to some b̂ ∈ [b, b].

Overconfidence corresponds to b̂ > b∗, while underconfidence corresponds to b̂ < b∗.

Assume that A contains actions above and below the objectively optimal action a∗,

and that the agent strictly prefers one of them to a∗ when she believes her ability is

b or b and the fundamental is ω∗. To avoid trivial nonrobustness, I focus on models

with complete parameter spaces: for any a ∈ A, there exists a fundamental value

Ωθ(a) ∈ Ωθ that can perfectly explain observed data, i.e., g(a, b̂,Ωθ(a)) = g(a, b∗, ω∗).

Let ΘM ⊂ Θ denote the set of all models satisfying this condition.

I assume α > 1 and focus on prior-free local robustness since the interesting asym-

metry between over- and underconfidence concerns the induced equilibria rather than

the prior. Proposition 1 shows that while overconfidence is always locally robust, un-

derconfidence is only locally robust on a union of disconnected intervals.

Proposition 1. There exists a strictly decreasing sequence b∗ = β0 > ... > βK = b

such that any model θ ∈ ΘM with b̂ ∈ [b, b] satisfies one of the following conditions.

(i) When the agent is overconfident, b̂ > b∗, model θ is locally robust.

(ii) When the agent is underconfident, b̂ < b∗, model θ is locally robust if b̂ ∈
(β2k+1, β2k) for some k ∈ N, but not if b̂ ∈ (β2k, β2k−1) for some k ∈ N+.

The asymmetry arises because overconfidence always induces a p-absorbing SCE,

while underconfidence may not. This stems from their different belief reinforcement

dynamics. To illustrate, suppose the fundamental and the action are strict complements

(gaω > 0). The optimal action(s) increase in beliefs about ω, as shown in Fig. 1 by

the step curve. For an overconfident agent (b̂ > b∗), lower a leads to even lower beliefs

about ω, as Ωθ(a′) < Ωθ(a′′) for a′ < a′′. This feedback ensures that the optimal action

and inference curves intersect to form at least one strict SCE. For an underconfident

agent (b̂ < b∗), higher a leads to lower beliefs, negatively reinforcing the distortion.

Here, the optimal action curve may not intersect the inference curve, leading to no

SCE. The agent oscillates between neighboring actions, and her belief does not fully

align with data from either.21 If instead the fundamental and the action are substitutes

(gaω < 0), the orientation of both curves inverts, so Proposition 1 still applies.

Remark 1. The condition sgn(gab) ̸= sgn(gaω) is sufficient but not necessary. Propo-

sition 1 may still hold in some settings where sgn(gab) = sgn(gaω), but verifying this

21The agent converges to a mixed Berk–Nash equilibrium, which extends self-confirming equilibrium
by allowing subjective predictions to deviate from the objective outcome distribution in equilibrium
(Esponda and Pouzo, 2016).
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Figure 1: Example illustration of equilibria. The step curve is the agent’s optimal
action correspondence and the blue curve is the agent’s inferred fundamental Ωθ(a).

requires a case-by-case analysis of belief reinforcement; i.e., whether the inferred fun-

damental function is comonotone with the optimal action correspondence.22

Remark 2. The nonexistence of SCE for a positive measure of b̂ below b∗ holds for

arbitrarily large discrete A. As the number of actions increases, so does the number

of unconnected intervals of b̂ where θ is not locally robust, with the total measure of

such intervals bounded away from zero (see Proposition 4 in Online Appendix E.1).

However, since the agent oscillates between actions that are closer together, it can take

longer for the Bayes factor to exceed α and trigger a switch. If A is a continuum, an

SCE always exists, even for b̂ < b∗, and thus over- and underconfidence are symmetric in

this dimension. However, characterizing their robustness properties requires extending

the framework to continuous actions, which is beyond the scope of this paper.23

5.2 Media Bias and Polarization

In this section, I study a media consumption problem and show how a misspecified

model about media bias (Groseclose and Milyo, 2005) can lead to robust polarization,

22For example, suppose that g(a, b, ω) = kanb+aω−c(a), where k, n > 0 and c is strictly increasing.
The comparison between over- and underconfidence depends on n. If n = 1, then there is no belief
reinforcement as Ωθ(a) is independent of a; thus, both over- and underconfidence are locally robust.

If n < 1, then it can be shown using g(a, b̂,Ωθ(a)) = g(a, b∗, ω∗) that Ωθ(a) is comonotone with the

optimal action correspondence if b̂ > b, and not comonotone if b̂ < b. Thus, Proposition 1 still applies.
By contrast, if n > 1, then the opposite of Proposition 1 holds; i.e., underconfidence is locally robust
while overconfidence need not be.

23Murooka and Yamamoto (2021) show that a dogmatic modeler with over- or underconfidence
converges to an SCE almost surely. However, whether these models can be sustained forever depends
on whether actions converge quickly enough to keep the Bayes factor below the switching threshold,
which likely depends on the local curvature of the optimal action and inference curves.
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despite no ex ante partisan bias. Individuals may even abandon a correctly specified

model and adopt this misspecified model permanently with arbitrarily high probability.

An agent chooses between left-wing, centrist, and right-wing media outlets, at ∈
A = {aL, aM , aR}, each reporting news stories of two types, yt ∈ Y = {l, r}. The

state of the world ω ∈ Ω = {ωL, ωM , ωR} determines the true fraction of l stories.

Specifically, ωM = 1/2, while ωL = 1 − ωR = δ > 1/2, so an l story signals state

ωL and r signals ωR. Outlets differ in their reporting biases: aM reports each story

truthfully, aL misreports r as l with probability xL ∈ (0, 1), and aR misreports l as r

with probability xR ∈ (0, 1). Our analysis compares two models, a misspecified model

θ̂ and a correctly specified model θ. Model θ̂ assumes only ωL and ωR are possible

(extremism), and takes reporting biases to be x̂L ∈ [0, 1) and x̂R ∈ [0, 1) (naivety).

Model θ recognizes all three states and the actual reporting biases, xL and xR. Under

both models, the agent strictly prefers the media outlet whose leaning matches the

state of the world for consumption benefits not modeled here.24

I focus on the interesting case where the true state is ωM . Suppose that outlets aL

and aR know this but seek to steer a naive agent toward their preferred states, ωL and

ωR, respectively. Accordingly, they strategically set xL = 2δ−1+2(1− δ)x̂L > x̂L and

xR = 2δ−1+2(1−δ)x̂R > x̂R so that a naive agent underestimates the reporting biases

and misinterprets their reported stories as perfect evidence indicating ωL or ωR.25

Given the outlets’ misreporting strategies, aM is the unique SCE under θ, while aL

and aR form strict SCEs with distinct supporting beliefs under θ̂. Under the correctly

specified model θ, the agent eventually infers the true state and subscribes to the

centrist outlet. Under the misspecified model θ̂, by contrast, the agent develops strong

political beliefs over time and consumes only media in line with those beliefs, leading

to polarization. Proposition 2(i) shows that while θ̂ is globally robust at all priors and

switching thresholds, θ is globally robust only at a sufficiently concentrated prior or

high switching threshold.

Proposition 2. (i) Model θ is globally robust at prior πθ
0 if and only if πθ

0(ω
M) ≥

1/α, while model θ̂ is globally robust at all priors given any α ≥ 1.

24This preference may arise if the state of the world—specifically, the true fraction of l-stories—
directly enters the agent’s payoff. That is, we may augment her payoff function to depend on ω. If ω
exceeds a threshold, the agent favors aL; if 1− ω exceeds a threshold, she favors aR; if the state is in
a moderate range, she favors aM . See Online Appendix E.2 for concrete examples.

25Under these misreporting strategies, outlet aL reports a fraction of l stories given by (1 + xL)/2
in state ωM , which matches the fraction the naive agent expects in state ωL, i.e., δ + (1 − δ)x̂L. A

similar equivalence holds for aR. If the outlets deviate from these probabilities, model θ̂ loses perfect
asymptotic accuracy and the agent must switch away if the competing model is correctly specified.
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(ii) Fix any full-support πθ
0, π

θ̂
0 and α < 1/πθ

0(ω
M). Given E = (θ, θ̂, πθ

0, π
θ̂
0), model θ̂

eventually replaces θ with positive probability, i.e., ∃T ∈ N s.t. mt = θ̂ for t ≥ T .

Moreover, this probability converges to 1 as πθ
0(ω

L) or πθ
0(ω

R) approaches 1.

To illustrate, suppose the agent considers the true model, θ∗, as the competing

model. It correctly predicts ωM and accounts for reporting biases. Over time, average

predictions under θ become less accurate than those of θ∗ because some of its predic-

tions (associated with ωL and ωR) are incorrect. Yet the misspecified θ̂ can fit data

consistently better than θ∗; i.e., the Bayes factor stays above α. This occurs, for exam-

ple, if for the first N periods, the agent sees only r stories from aL and l stories from

aR. Since the data suggests minimal reporting bias, model θ̂ accumulates a growing

fit advantage relative to θ∗ as N increases. Under θ̂, the agent takes contrarian stories

as evidence for the opposing state. If stories from aM happen to lean in one direction,

she gravitates toward one of the SCEs while becoming even more convinced of θ̂. The

better fit of θ̂ persists beyond the first N periods, as she ends up in an SCE.

Proposition 2(ii) also shows that if the agent initially adopts θ and considers θ̂ to be

the competing model, she abandons θ in favor of θ̂ with positive probability when θ is

not globally robust. This follows from a broader transitivity principle: since θ does not

persist against θ∗ and θ̂ can consistently fit better than θ∗, the agent switches to θ̂ with

positive probability. Given that θ̂ is globally robust at all priors, the agent ultimately

settles for θ̂ after the switch with positive probability.26 Furthermore, as πθ
0(ω

L) or

πθ
0(ω

R) increases to 1, model θ exhibits an increasingly poor data fit on average, and

hence the probability of a permanent switch to θ̂ increases to one.

6 Extensions

In this section, I discuss how the main results extend when key assumptions are relaxed

or modified. Additional extensions, including alternative persistence definitions and

infinite parameter spaces, are in Online Appendix F.

Alternative Switching Rules. Under the Bayes factor rule, robust models are

characterized by asymptotic accuracy and prior tightness. Within the class of Bayes

factor rules, the main results remain robust under asymmetric switching thresholds:

α1 ≥ 1 for switches to θ′ and α2 ≥ 1 for switches back to θ. However, only the first

26Generally, under the no-trap conditions, for any E = (θ, θ̂, πθ
0 , π

θ̂
0) where θ̂ is globally robust at

all priors and θ is not globally robust at πθ
0 , model θ̂ eventually replaces θ with positive probability.
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threshold, α1, enters the prior tightness condition.27 Another possible modification

concerns the timing of model comparison. Instead of comparing models from the

beginning, the agent may wish to wait for T periods to form a more informed posterior

and use that as the prior for model comparison (Berger and Pericchi, 1996). This relaxes

prior tightness for global robustness and more so for larger T since the agent’s posterior

converges to an SCE belief. Consequently, asymptotically accurate but misspecified

models become even more likely to be robust.28

By contrast, the LRT leads to starkly different results. Unlike the Bayes factor rule,

the LRT relies on maximized likelihoods instead of marginal likelihoods. As shown

by Theorem 4 in Online Appendix F.1, for any model θ ∈ Θ, there exists a threshold

α > 1 such that if α ∈ [1, α), θ cannot be globally robust under any prior. If the

outcome space is a continuum or the competing model may contain infinitely many

DGPs, then α = ∞, and hence no model—not even the true model—can be globally

robust. The proof constructs larger nesting models that strictly outperform θ over a

finite but sufficiently long horizon, ensuring that the agent eventually switches away.

To see the intuition, note that both the Bayes factor rule and the LRT are special

cases of a broader class of power-mean likelihood ratio rules, in which the agent com-

putes λ
(β)
t := ℓ

(β)
t (θ′)/ℓ

(β)
t (θ) for some β ∈ R. Here, ℓ(β)t (θ) :=

[∑
ω∈Ωθ πθ

0(ω) · ℓt(θ, ω)β
]1/β

captures the overall fit of a model by aggregating the likelihoods of the data across

parameters, with higher β placing greater weight on the best-fitting DGP and lower β

imposing a penalty on any prior dispersion over DGPs with a worse fit.

As β → ∞, the rule converges to the LRT. Here, larger models that nest smaller ones

always generate weakly higher best fit, so global robustness often becomes impossible.

When β = 1, the Bayes factor rule is recovered, which strikes a balance between

best fit and prior dispersion. Accordingly, global robustness is characterized by perfect

asymptotic accuracy and prior tightness, with the latter determined by α. As β → −∞,

the rule approaches the opposite extreme to the LRT: it evaluates a model’s fit based

on its worst likelihood, which I refer to as the Min-Likelihood Ratio Test (Min-LRT).

As shown by Theorem 5 in Online Appendix F.2, under this rule, for any switching

threshold α ≥ 1, only singleton models—those with full prior concentration on a single

DGP—that are asymptotically accurate are globally robust.

27This follows from the proofs of Theorems 1 to 3, which either shows that (i) with positive
probability the agent never switches or (ii) the Bayes factor exceeds the first switching threshold
forever, triggering a permanent switch. In both cases, only the threshold for switching to θ′ matters.

28An exception occurs when α = 1, where Theorem 3 shows that the prior must be fully concen-
trated at Cθ. Since all model predictions have full support on Y, delaying model comparison does not
change this requirement.
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Multiple Competing Models. The framework extends naturally to multiple com-

peting models, where the agent computes the Bayes factor for each model and switches

if any exceeds α. As the number of models, |Θ†|, increases, global robustness becomes

harder to achieve, since it becomes more likely that at least one model will outperform

the initial model. If that model turns out to have perfect asymptotic accuracy, the

agent may never switch away from it. In fact, if |Θ†| > 2 + α, even the true model θ∗

may fail to be globally robust.29 A simple fix is to increase switching stickiness.30 As

shown by Theorem 6 in Online Appendix F.3, if |Θ†| < α+1, asymptotically accurate

misspecified models are still globally robust for some full-support prior.

Forward-Looking Agent. If the agent is forward-looking within each model but not

across models, that is, if she maximizes the discounted sum of payoffs under the current

model, the main results (Theorems 1 to 3) remain unchanged. While experimentation

motives make the p-absorbingness of an SCE harder to achieve, robustness depends

only on the existence of such equilibria. Further details, including a stronger sufficient

condition for p-absorbingness, are provided in Online Appendix F.4.

7 Concluding Remarks

This paper develops a theoretical framework for analyzing the robustness of misspec-

ified models when decision-makers are aware of potential model misspecification. By

incorporating sticky switching into an active learning framework, I define two notions

of model robustness—local and global—and show that they hinge on two properties:

asymptotic accuracy and prior tightness. These results formalize the idea that mis-

specified models can be persistent if they induce stable self-confirming equilibria and

provide a unified framework for comparing robustness across priors, competing models,

and switching rules. The framework suggest several directions for future work. Lower

switching thresholds make it easier to escape misspecified models but also risk prema-

turely discarding correctly specified ones due to early noise. An open question is how

to optimally set the threshold to balance Type I and Type II errors in the endogenous-

data environment. In addition, while persistence ensures that a model may be adopted

forever, it does not quantify how likely this adoption is. Future work could study how

this depends on key primitives, such as whether the model is correctly specified or

misspecified, and features of the learning environment.

29See Example 5 in Online Appendix F.3.
30The effect of multiple competing models parallels the multiple comparisons problem in statistics,

and increasing stickiness serves a similar role to the Bonferroni correction (Dunn, 1961).
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A Auxiliary Definitions and Results

A.1 Underlying Probability Space

The underlying probability space is constructed as follows. The sample space is de-

fined as Y := (Y∞)A, where each element consists of infinite sequences of outcome

realizations (ya,0, ya,1, ...) for all actions a ∈ A. Here, ya,t denotes the outcome if the

agent takes a in period t. Independent draws from the true DGP q∗ over Y , condi-

tional on actions, induce a product probability measure P over Y , with F being the

corresponding product sigma-algebra. Let h := (at, yt)
∞
t=0 denote an infinite history,

i.e., an infinite sequence of action-outcome pairs, and define the set of infinite histories

as H := (A× Y)∞. Given the switching threshold α, the switcher’s learning environ-

ment E = (θ, θ′, πθ
0, π

θ′
0 ), and the policies (f θ, f θ′), the probability measure P induces

a measure over H when the agent is a switcher, denoted by PS. When the agent is a

θ-modeler using the prior πθ
0 and policy f θ, a different probability measure over H is

induced, denoted by PD. Unless stated otherwise, all probabilistic statements about

a switcher are made with respect to PS, while those concerning a θ-modeler are with

respect to PD.

A.2 Distance Measure for Models

For any two probability measures µ and µ′ over metric space Y , the Prokhorov distance

is given by

dP (µ, µ
′) := inf {ϵ > 0|µ (Y ) ≤ µ′ (Bϵ (Y )) + ϵ and µ′ (Y ) ≤ µ (Bϵ (Y )) + ϵ for all Y ⊆ Y} .

The Hausdorff distance between any two sets X and Z is

dH(X,Z) = max{sup
x∈X

inf
z∈Z

d̂(x, z), sup
z∈Z

inf
x∈X

d̂(x, z)},

where d̂ measures the distance between any two elements in X and Z.

For convenience, denote the DGP to which model θ and parameter ω correspond

by Qθ,ω, and the corresponding outcome distribution for action a by Qθ,ω
a . I define

the distance between Qθ,ω and Qθ′,ω′
as the maximum Prokhorov distance between the

outcome distributions across all actions,

d(Qθ,ω, Qθ′,ω′
) := max

a∈A
dP (Q

θ,ω
a , Qθ′,ω′

a ).
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The distance between model θ and model θ′ is then defined over the sets of DGPs they

induce, measured by the Hausdorff metric:

d(θ, θ′) := dH

(
{Qθ,ω}ω∈Ωθ , {Qθ′,ω′}ω′∈Ωθ′

)
.

All results extend to other commonly used distance measures over probability distri-

butions, including Kullback–Leibler divergence and total variation distance.

A.3 Useful Lemmas

Lemma 2. Consider any learning environment E = (θ, θ′, πθ
0, π

θ′
0 ) in which θ, θ′ ∈ Θ

and θ′ is correctly specified. The ratio ℓt(θ)/ℓt(θ
′) a.s. converges to a non-negative

finite random variable.

Proof. Let κt = ℓt(θ)/ℓt(θ
′), then κt ≥ 0,∀t. I now construct the probability measure

under which κt is a martingale. Given prior πθ′
0 , denote by Pθ′

S the probability measure

over the set of histories H as implied by model θ′. Formally, for any Ĥ ⊆ H, we

have Pθ′
S

(
Ĥ
)
=
∑

ω∈Ωθ′ πθ′
0 (ω)Pθ′,ω

S

(
Ĥ
)
, where Pθ′,ω

S is the probability measure over

H if the true DGP is as described by θ′ and ω and the agent is a switcher. Take the

conditional expectation of κt with respect to Pθ′
S , then we have

EPθ′
S (κt | ht−1)

= EPθ′
S

[ ∑
ω∈Ωθ qθ (yt|at, ω) πθ

t (ω)∑
ω′∈Ωθ′ qθ

′ (yt|at, ω′) πθ′
t (ω′)

· κt | ht−1

]
= κt−1

∑
ω̃∈Ωθ′

πθ′

t (ω̃)

[∫
Y

∑
ω∈Ωθ qθ (yt|at, ω) πθ

t (ω)∑
ω′∈Ωθ′ qθ

′ (yt|at, ω′)πθ′
t (ω′)

qθ
′
(yt|at, ω̃) ν (dyt)

]

= κt−1

∫
Y

 ∑
ω∈Ωθ qθ (yt|at, ω) πθ

t (ω)∑
ω′∈Ωθ′ qθ

′ (yt|at, ω′) πθ′
t (ω′)

∑
ω̃∈Ωθ′

qθ
′
(yt|at, ω̃)πθ′

t (ω̃)

 ν (dyt)

= κt−1

∫
Y

[∑
ω∈Ωθ

qθ (yt|at, ω) πθ
t (ω)

]
ν (dyt)

= κt−1

∑
ω∈Ωθ

[∫
Y
qθ (yt|at, ω) ν (dyt)

]
πθ
t (ω) = κt−1.

Hence, κt is a martingale w.r.t. Pθ′
S . Since κt is non-negative, the martingale conver-

gence theorem implies that κt converges to a random variable κ and κ is finite almost

surely w.r.t. Pθ′
S . Since θ′ is correctly specified, there exists a parameter ω∗ ∈ Ωθ′
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such that q∗ (·|a) ≡ qθ
′
(·|a, ω∗) ,∀a ∈ A. It then follows from πθ′

0 (ω∗) > 0 that κt also

converges to κ almost surely w.r.t. Pθ′,ω∗

S , which is the same measure as PS.

Lemma 3. Suppose θ ∈ Θ persists against a correctly specified model θ′ ∈ Θ at some

full-support priors πθ
0, π

θ′
0 . Then on paths where mt eventually equals θ, we have λt

a.s.−−→
λ∞ ≤ α, πθ′

t
a.s.−−→ πθ′

∞, and πθ
t

a.s.−−→ πθ
∞.

Proof. It immediately follows from Lemma 2 that ℓt(θ
′)/ℓt(θ)

a.s.−−→ ι ≤ α on paths where

mt converges to θ. I now show that πθ
t and πθ′

t also converge almost surely. Given any

ω ∈ Ωθ, write

πθ
t (ω)

πθ
0 (ω)

=

∏t
τ=0 q

θ (yτ |aτ , ω)∑
ω′∈Ωθ

∏t
τ=0 q

θ (yτ |aτ , ω′) πθ
0 (ω

′)

=
ℓt(θ

′)

ℓt(θ)
· ℓt(θ, ω)

ℓt(θ′)
,

where the second term ℓt(θ, ω)/ℓt(θ
′) can be seen as the likelihood ratio of a model

that consists of a single parameter ω and the competing model θ′. By Lemma 2,

ℓt(θ, ω)/ℓt(θ
′) a.s. converges to a random variable that is finite. Consider the paths on

which mt converges to θ. On these paths, both ℓt(θ
′)/ℓt(θ) and ℓt(θ, ω)/ℓt(θ

′) converges

a.s., which implies that πθ
t (ω) a.s. converges to a random variable as well. Since this

is true for all ω ∈ Ωθ, πθ
t a.s. converges to some limit πθ

∞ on those paths. Analogously,

for any ω′ ∈ Ωθ′ , we can write
πθ′
t (ω′)

πθ′
0 (ω′)

= ℓt(θ′,ω′)
ℓt(θ′)

, which, again by Lemma 2, converges

almost surely.

Lemma 4. Fix any θ, θ′ ∈ Θ, ω ∈ Ωθ, ω′ ∈ Ωθ′ and any sequence of actions (a1, a2, ...).

For each infinite history h ∈ (A× Y)∞ that is generated according to (a1, a2, ...) by the

true DGP, let

ξt (h) = ln
qθ (yt|at, ω)
qθ′ (yt|at, ω′)

− E
(
ln

qθ (yt|at, ω)
qθ′ (yt|at, ω′)

|ht−1

)
.

Then for any fixed t0 ≥ 1,

lim
t→∞

(t− t0 + 1)−1
t∑

τ=t0

ξτ (h) = 0, a.s..

Proof. Note that ξt (h) is a martingale difference process since E (ξt (h) |ht−1) = 0. So

for any t0, ξ
t
t0
(h) :=

∑t
τ=t0

(t− τ + 1)−1 ξτ (h) is also a martingale difference process.
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To use the martingale convergence theorem, I now show that supt E
((

ξtt0
)2)

< ∞.

Notice that

E
((

ξtt0
)2)

=E

( t∑
τ=t0

(t− τ + 1)−1 ξτ (h)

)2


≤
t∑

τ=t0

(t− τ + 1)−2 E
[
(ξτ (h))

2]
≤

t∑
τ=t0

(t− τ + 1)−2 E

[(
ln

qθ (yt|at, ω)
qθ′ (yt|at, ω′)

)2
]

≤2
t∑

τ=t0

(t− τ + 1)−2 E

[(
ln

q∗ (yt|at)
qθ (yt|at, ω)

)2

+

(
ln

q∗ (yt|at)
qθ′ (yt|at, ω′)

)2
]

≤4
t∑

τ=t0

(t− τ + 1)−2max
a

E
[
(ra (yt))

2] < ∞,

where the first inequality follows from the fact that, for any τ ′ > τ ≥ t0, E (ξτ (h) ξτ ′ (h)) =

E (E (ξτ ′ (h) |hτ ) ξτ (h)) = 0 and the last inequality follows from Assumption 2. Hence,

the martingale convergence theorem implies that ξtt0 converges to a random variable

ξ∞t0 almost surely with E
((

ξ∞t0
)2)

< ∞.

Since ξ∞t0 = limt→∞
∑t

τ=t0
(t− τ + 1)−1 ξτ (h) is finite a.s., it follows from the Kro-

necker Lemma that

lim
t→∞

(t− t0 + 1)−1
t∑

τ=t0

ξτ (h) = 0, a.s..

B Proofs of Main Results

Unless otherwise stated, I assume throughout that the agent is forward-looking within

each model, with a discount factor δ ∈ [0, 1), but does not anticipate future model

switches (see Section 6). This includes the special case where the agent is fully myopic

both within and across models, which is the assumption for the main analysis.

For any set of probability distributions Z ⊆ ∆S, define the open ϵ-neighborhood of

Z (under the Prokhorov metric dP ) as Bϵ(Z) = {z ∈ ∆S : infz′∈Z dP (z, z
′) < ϵ}.

For convenience, let Ωθ(σ) denote the subset of parameters in model θ such that,

for every a ∈ supp(σ), the distribution qθ(·|a, ω) matches the true DGP q∗(·|a).
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B.1 Proof of Lemma 1

By Lemma 3, on paths where θ is eventually forever adopted, beliefs πθ
t and πθ′

t both

converge almost surely. Consider any ω̂ such that with positive probability, mt eventu-

ally equals θ and ω̂ ∈ supp
(
πθ
∞
)
. Let A− (ω̂) :=

{
a ∈ A : qθ (·|a, ω̂) ̸= q∗ (·|a)

}
. I now

show that every action in A− (ω̂) is played at most finite times a.s. on the paths where

mt converges to θ and ω̂ ∈ supp
(
πθ
∞
)
. Suppose instead that actions in A− (ω̂) are

played infinitely often. Then there must exist some γ > 0 such that E ln q∗(y|at)
qθ(y|at,ω̂) > γ

for infinitely many t. Since θ′ is correctly specified, there exists a parameter ω∗ ∈ Ωθ′

such that q∗ (·|a) ≡ qθ
′
(·|a, ω∗) , ∀a ∈ A. Hence, E ln qθ

′
(y|at,ω∗)

qθ(y|at,ω̂) > γ for infinitely many

t. Notice that

λt =
ℓt(θ

′)

ℓt(θ)
=

∑
ω′∈Ωθ′

∏t
τ=0 q

θ′ (yτ |aτ , ω′) πθ′
0 (ω′)∑

ω∈Ωθ

∏t
τ=0 q

θ (yτ |aτ , ω)πθ
0 (ω)

> πθ
t (ω̂)

πθ′
0 (ω∗)

πθ
0 (ω̂)

∏t
τ=0 q

θ′ (yτ |aτ , ω∗)∏t
τ=0 q

θ (yτ |aτ , ω̂)

= πθ
t (ω̂)

πθ′
0 (ω∗)

πθ
0 (ω̂)

exp

[
t∑

τ=0

1{aτ∈A−(ω̂)} ln
qθ

′
(yτ |aτ , ω∗)

qθ (yτ |aτ , ω̂)

]
,

which, by Lemma 4, a.s. increases to infinity as t → ∞, contradicting the assumption

that mt converges to θ. Therefore, on the paths where mt eventually equals θ, almost

surely, there exists T such that at ∈ A\ ∪ω̂∈supp
(
πθ
∞
) A− (ω̂) ,∀t > T .

Since qθ (·|a, ω′) ≡ q∗ (·|a) for all ω′ ∈ supp
(
πθ
∞
)
and all a ∈ A\∪ω′∈supp

(
πθ
∞
)A− (ω′),

the actions that are played in the limit have no experimentation value and are my-

opically optimal. Therefore, any strategy that takes support on the limit actions is a

self-confirming equilibrium. Fixing a particular value of πθ
∞ that is a limit belief for a

positive measure of histories where mt eventually equals θ, there exists a set of actions

Â ⊆ Aθ
m

(
πθ
∞
)
such that on those histories, the agent only plays actions from this set

in the limit. Since mt eventually converges to θ, it must be true that with positive

probability, a θ-modeler who inherits the switcher’s prior and policy from the period

when the last switch happens also only plays actions from Â in the limit with positive

probability. Therefore, take any strategy σ with supp (σ) = Â, it is a p-absorbing

self-confirming equilibrium under θ.
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B.2 Proof of Theorem 1

The structure of the proof is as follows. I first show that when α > 1, statement (i) is

equivalent to statement (iii). The main focus in on the “if” direction since the “only if”

direction follows immediately from Lemma 1. I then show that when α > 1, statement

(ii) implies (iii). Since statement (i) (global robustness) clearly implies statement (ii)

(local robustness), it follows that all three statements are equivalent. This completes

the proof of Theorem 1.

Step 1. (iii)⇔(i). It directly follows from Lemma 1 that a p-absorbing SCE is

necessary for global robustness. I now prove sufficiency.

Pick any competing model θ′ ∈ Θ and any full-support prior πθ′
0 ∈ ∆Ωθ′ . Let

St := ℓt(θ
′)/ℓt(θ

∗), then St is a martingale with respect to both PD and PS. By Ville’s

maximal inequality for supermartingales, the probability that Sn is bounded above

by a positive constant larger than 1 is bounded away from 0. In particular, for any

η ∈ (1, α),

PD(St ≤ η,∀t ≥ 0) ≥ 1− EPDS0

η
= 1− 1

η
.

Note that this inequality holds for any model θ′.

Denote by σ a p-absorbing SCE under θ. Fixing some ϵ > 0, define E as the

event that at ∈ supp(σ) and πθ
t ∈ Bϵ(∆Ωθ(σ)) for all t ≥ 0. By Lemma 7 in Online

Appendix C, p-absorbingness implies that for any η ∈ (1, α), there exists a prior

πθ
0 ∈ Bϵ(∆Ωθ(σ)) such that if the agent starts from this prior, PD(E) > 1/η. Therefore,

PD(E occurs and St ≤ η,∀t ≥ 0) ≥ PD(E) + PD(St ≤ η,∀t ≥ 0)− 1 > 0.

Denote the histories where E occurs and St ≤ η,∀t ≥ 0 by Ĥ. When ϵ is small enough,

we have that on Ĥ,

λt =
ℓt(θ

′)

ℓt(θ)
=

∑
ω′∈Ωθ′ πθ′

0 (ω′)
∏t

τ=0 q
θ′ (yτ |aτ , ω′)∑

ω∈Ωθ πθ
0 (ω)

∏t
τ=0 q

θ (yτ |aτ , ω)

<

∑
ω′∈Ωθ′ πθ′

0 (ω′)
∏t

τ=0 q
θ′ (yτ |aτ , ω′)

πθ
0 (Ω

θ(σ))
∏t

τ=0 q
∗ (yτ |aτ )

≤ η

1− ϵ
< α

where the first inequality follows from the fact that πθ
0 is full-support and the second

inequality follows from the definition of Ĥ. Thus, on Ĥ, the switcher never makes any

switch to the competing model θ′, i.e., mt = θ, ∀t ≥ 0, and her action choices would

be identical to the θ-modeler. Therefore, if we endow the switcher with the same prior
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πθ
0, event Ĥ also occurs with positive probability under PS.

Step 2. (ii)⇒(iii). I show that if θ is locally robust at some prior, then it must admit

a p-absorbing SCE. Suppose it does not, then a competing model θ′ can be constructed

as follows. Let θ′ have the identical parameter space as θ, i.e., Ωθ′ = Ωθ, and let its

predictions be given by qθ
′
(·|a, ω) = µqθ (·|a, ω) + (1 − µ)q∗ (·|a), for all a ∈ A and

all ω ∈ Ωθ, where µ ∈ (0, 1). For any ϵ > 0, when µ is close enough to 1, we have

θ′ ∈ Nϵ (θ). By the definition of local robustness, there exists ϵ > 0 such that θ persists

against θ′ at some full-support priors πθ
0 and πθ′

0 = πθ
0. Consider any ω̂ ∈ Ωθ such

that PS

(
mt → θ and lim inft→∞ πθ

t (ω̂) > 0
)
> 0. Let A−(ω̂) := {a ∈ A : qθ(·|a, ω̂) ̸=

q∗(·|a)}. Then every action in A−(ω̂) is played at most finite times a.s. on the path

where mt eventually equals θ and lim inft→∞ πθ
t (ω̂) > 0. Suppose instead that actions

in A− (ω̂) are played infinitely often. Then there must exist some γ > 0 such that

E ln q∗(y|at)
qθ(y|at,ω̂) > γ for infinitely many t. So we have

E ln
qθ

′
(y|at, ω̂)

qθ (y|at, ω̂)
= E ln

(
µ+ (1− µ)

q∗ (y|at)
qθ (y|at, ω̂)

)
> (1− µ)γ

where the inequality follows from Jensen’s inequality. Therefore,

λt =

∑
ω∈Ωθ

∏t
τ=0 q

θ′ (yτ |aτ , ω) πθ
0 (ω)∑

ω∈Ωθ

∏t
τ=0 q

θ (yτ |aτ , ω)πθ
0 (ω)

>πθ
t (ω̂)

πθ
0 (ω̂)

πθ
0 (ω̂)

∏t
τ=0 q

θ′ (yτ |at, ω̂)∏t
τ=0 q

θ (yτ |aτ , ω̂)

=πθ
t (ω̂) exp

[
t∑

τ=0

1{aτ∈A−(ω̂)} ln
qθ

′
(yτ |at, ω̂)

qθ (yτ |aτ , ω̂)

]
,

which, by Lemma 4, almost surely diverges to infinity when mt converges to θ and

lim inft→∞ πθ
t (ω̂) > 0. This implies that, letting Ω̂θ := {ω ∈ Ωθ : lim inft→∞ πθ

t (ω̂) > 0},
on the paths where mt eventually equals θ, there almost surely exists T such that

at ∈ A\ ∪ω̂∈Ω̂θ A− (ω̂) ,∀t > T . Since qθ (·|a, ω̂) is equal to q∗ (·|a) for all ω̂ ∈ Ω̂θ and

all a ∈ A\∪ω̂∈Ω̂θ A− (ω̂), the posterior πθ
t must converge to a limit πθ

∞. The rest of the

arguments are identical to those in the proof of Lemma 1; it follows that θ must admit

a p-absorbing SCE.
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B.3 Proof of Corollary 1

I show that when the agent is myopic, i.e., discount factor δ = 0, any quasi-strict SCE

satisfies a stability property stronger than p-absorbingness, which implies Corollary 1.

Lemma 5. Suppose the agent is myopic and σ is a quasi-strict SCE with supporting

belief π̂. Then for any γ ∈ (0, 1), there exists ϵ > 0 such that starting from any prior

πθ
0 ∈ Bϵ(π̂), the probability that the θ-modeler always plays actions in supp(σ) for all

periods is strictly larger than γ.

Proof. Let Pθ,Ωθ(σ)
D denote the probability measure over the set of histories as implied

by model θ when the possible DGPs are restricted to Ωθ(σ). Formally, for any Ĥ ⊆ H,

we have

Pθ,Ωθ(σ)
D

(
Ĥ
)
=

1

πθ
0(Ω

θ(σ))

∑
ω∈Ωθ(σ)

πθ
0 (ω)P

θ,ω
D

(
Ĥ
)
,

where Pθ,ω
D is the probability measure over H if the true DGP is as described by θ

and ω and the agent is a θ-modeler. If at ∈ supp(σ), then the consistency of the SCE

implies that Pθ,Ωθ(σ)
D (Yt|at) = Q∗(Yt|at) for Yt ⊂ Y .

Then for every ω ∈ Ωθ\Ωθ(σ),
πθ
t (ω)

πθ
t (Ωθ(σ))

is a non-negative martingale with respect

to Pθ,Ωθ(σ)
D . It follows that

πθ
t (Ωθ\Ωθ(σ))
πθ
t (Ωθ(σ))

is also a non-negative martingale w.r.t. Pθ,Ωθ(σ)
D .

By Ville’s maximal inequality for supermartingales, for any η > 0,

Pθ,Ωθ(σ)
D

(
πθ
t

(
Ωθ\Ωθ(σ)

)
πθ
t (Ω

θ(σ))
≥ η for some t

)
<

1

η

πθ
0

(
Ωθ\Ωθ(σ)

)
πθ
0 (Ω

θ(σ))
.

Since πθ
t

(
Ωθ(σ)

)
= 1− πθ

t

(
Ωθ\Ωθ(σ)

)
, the above inequality implies that

Pθ,Ωθ(σ)
D

(
πθ
t

(
Ωθ\Ωθ(σ)

)
≥ η

1 + η
for some t

)
<

1

η

πθ
0

(
Ωθ\Ωθ(σ)

)
πθ
0 (Ω

θ(σ))
.

If σ is quasi-strict, then supp (σ) = Aθ
m(π̂). Since Aθ

M is upper hemicontinuous

(Lemma 6 in Online Appendix C), there exists ϵ̃ > 0 small enough such that supp (σ) ⊃
Aθ

M (π) for all π ∈ Bϵ̃ (π̂). Pick some ϵ ∈ (0, ϵ̃) and πθ
0 ∈ Bϵ (π̂), then πθ

0

(
Ωθ\Ωθ(σ)

)
< ϵ

and a0 ∈ supp(σ). Note that the ratio
πθ
t (ω)

πθ
t (ω

′)
remain unchanged throughout all periods

such that at ∈ supp(σ) for any ω, ω′ ∈ Ωθ(σ) since ω and ω′ prescribe the same out-

come distribution. Hence, if πθ
t ̸∈ Bϵ̃ (π̂) for some t ≥ 0 and a1, ..., at−1 ∈ supp(σ), then

there exists t such that πθ
t

(
Ωθ\Ωθ(σ)

)
≥ πθ

0

(
Ωθ\Ωθ(σ)

)
+ ϵ̃ − ϵ. Using the previous
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inequality,

Pθ,Ωθ(σ)
D (a0, ..., at−1 ∈ supp(σ) and at ̸∈ supp(σ) for some t)

≤ Pθ,Ωθ(σ)
D

(
a0, ..., at−1 ∈ supp(σ) and πθ

t ̸∈ Bϵ̃ (π̂) for some t ≥ 0
)

≤ Pθ,Ωθ(σ)
D

(
πθ
t

(
Ωθ\Ωθ(σ)

)
≥ πθ

0

(
Ωθ\Ωθ(σ)

)
+ ϵ̃− ϵ for some t

)
<

(
1

πθ
0 (Ω

θ\Ωθ(σ)) + ϵ̃− ϵ
− 1

)
πθ
0

(
Ωθ\Ωθ(σ)

)
πθ
0 (Ω

θ(σ))

<

(
1

ϵ̃− ϵ
− 1

)
ϵ

1− ϵ

which converges to 0 as ϵ approaches 0. This implies that for any γ ∈ (0, 1) we have

Pθ,Ωθ(σ)
D (at ∈ supp(σ),∀t ≥ 0) > γ when ϵ is sufficiently small. Since all parameters in

Ωθ(σ) prescribe the true outcome distribution whenever actions in supp(σ) are played,

PD (at ∈ supp(σ),∀t ≥ 0) = Pθ,Ωθ(σ)
D (at ∈ supp(σ),∀t ≥ 0) > γ.

B.4 Proof of Theorem 2

Part (i). I first prove that global robustness requires prior tightness (necessity) and

then prior tightness implies global robustness (sufficiency).

Necessity. Suppose θ is globally robust at prior πθ
0. By Theorem 1, we know that there

must exist a p-absorbing SCE under θ. By identifiability in the no-trap condition, any

SCE can only be supported by a pure belief, and hence Cθ ̸= ∅. Suppose for the sake

of contradiction that πθ
0(C

θ) < 1/α. I now construct a competing model such that

model θ does not persist against this model at πθ
0.

Consider a competing model θ′ ∈ Θ such that it contains the prediction associated

with the parameters in Cθ and the true DGP. In particular, let Ωθ′ = Cθ ∪ {ω∗} and

suppose the predictions of model θ′ satisfy that for all a ∈ A,

qθ
′
(·|a, ω) =

qθ(·|a, ω) if ω ∈ Cθ,

q∗(·|a) if ω = ω∗.

In addition, pick some ϵ ∈ (0, 1) and let the prior πθ′
0 be

πθ′

0 (ω) =

(1− ϵ)
πθ
0(ω)

πθ
0(C

θ)
if ω ∈ Cθ,

ϵ if ω = ω∗.
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Since θ′ is correctly specified, by Lemma 1, on the paths where mt eventually equals

θ, the agent eventually only play actions in the support of an SCE almost surely, and

her posterior converges to a supporting belief of the SCE, i.e., πθ
t (C

θ)
a.s.−−→ 1. By

construction

ℓt(θ
′) = (1− ϵ)

∑
ω∈Cθ

πθ
0(ω)

πθ
0(C

θ)
ℓt(θ, ω) + ϵℓt(θ

∗),

so we have

ℓt(θ
′)

ℓt(θ)
= (1− ϵ)

πθ
t (C

θ)

πθ
0(C

θ)
+ ϵ

ℓt(θ
∗)

ℓt(θ)
.

The first term almost surely converges to (1 − ϵ) 1
πθ
0(C

θ)
. Since πθ

0(C
θ) < 1/α, there

exists ϵ sufficiently small such that ℓt(θ′)
ℓt(θ)

> α for sufficiently large t, contradicting the

assumption that mt eventually equals θ.

Sufficiency. Suppose Cθ ̸= ∅ and πθ
0(C

θ) ≥ 1/α. Pick any competing model θ′ and a

full-support prior πθ′
0 . I now show that model θ persists against θ′ at the given priors.

Define a new probability measure P̂ over the action and outcome histories H such that

for any histories Ĥ ⊂ H,

P̂
(
Ĥ
)
=
∑
ω∈Cθ

πθ
0 (ω)

πθ
0(C

θ)
Pθ,ω
S

(
Ĥ
)
,

where Pθ,ω
S is the probability measure over histories induced by the agent switcher if

the true DGP is identical to the DGP prescribed by θ and ω. Define the following

process,

λ̂t :=
1

πθ
0(C

θ)

ℓt(θ
′)∑

ω∈Cθ
πθ
0(ω)

πθ
0(C

θ)
ℓt(θ, ω)

.

Then it is a martingale w.r.t. P̂ with EP̂(λ̂t) = 1/πθ
0(C

θ). Letting ηt := πθ
0(C

θ)λ̂t, then

ηt is also a martingale w.r.t. P̂ with EP̂(ηt) = 1. Since EP̂(η0) = 1, it must be that

η0 = 1 almost surely, or there exists η < 1 such that η0 ≤ η with positive probability.

Suppose for now that the latter is the case.
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By definition, λ̂t ≥ λt, where the equality holds only if Ωθ = Cθ. Note that

P̂(λt ≤ α, ∀t) ≥ P̂(λ̂t ≤ α, ∀t)
= P̂(ηt ≤ πθ

0(C
θ)α, ∀t)

≥ P̂(η0 ≤ η and ηt ≤ πθ
0(C

θ)α, ∀t ≥ 2)

≥ P̂(η0 ≤ η) · inf
η0≤η

P̂(ηt ≤ πθ
0(C

θ)α, ∀t ≥ 2|η0)

≥ P̂(η0 ≤ η) ·
(
1− η

πθ
0(C

θ)α

)
> 0,

where the first inequality follows from λ̂t ≥ λt, the second inequality follows from

πθ
0(C

θ) ≥ 1/α, and the fourth inequality follows from Ville’s maximal inequality. If

η0 = 1 almost surely with respect to P̂, then we only need to consider ηt from t = 2 and

can apply the same argument as above unless η2 = 1 almost surely as well. Iterating

this argument, the only remaining case is where ηt = 1 for all t, but in this case

P̂(ηt ≤ πθ
0(C

θ)α, ∀t) = 1.

This implies that there exists ω̂ ∈ Cθ such that

Pθ,ω̂
S (λt ≤ α, ∀t) > 0.

Since θ has no traps, it is identifiable and all of its p-absorbing SCEs are quasi-strict.

Identifiability implies that Pθ,ω̂
S (limt→∞ πθ

t (ω̂) = 1) = 1. With quasi-strictness, by

Lemma 5, there exists ϵ > 0 such that the myopically optimal actions must be in

the support of an SCE when πθ
t (ω̂) > 1 − ϵ. Since the limit belief is degenerate over

a singleton, the myopically optimal action is also dynamically optimal in the limit.

Taken together, the no-trap conditions imply that there exists T > 0 such that with

positive probability (measured by Pθ,ω̂
S ), the agent plays only SCE actions after period

T and never switches. Denote the set of such histories by Ĥ. For any ĥ ∈ Ĥ, denote

the observable history for the first T periods by ĥT− and the history after the first

T periods by ĥT+. Since T is finite, by absolute continuity (Assumption 2), for any

ĥ ∈ Ĥ, the history ĥT− also occurs with positive probability under the true measure

PS. Conditional on ĥT−, since the agent plays only SCE actions on Ĥ after the first T

periods, the two probability measures Pθ,ω̂
S and PS over Ĥ are identical to each other.
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Therefore,

PS(Ĥ) =
∑
ĥ∈Ĥ

PS(ĥT−)PS(ĥT+|ĥT−)

=
∑
ĥ∈Ĥ

PS(ĥT−)Pθ,ω̂
S (ĥT+|ĥT−)

≥ min
h̃∈Ĥ

PS(h̃T−)

Pθ,ω̂
S (h̃T−)

Pθ,ω̂
S (Ĥ) > 0.

This means that with positive probability (under the true probability measure PS), the

agent never switches to θ′. Therefore, model θ persists against θ′ at priors πθ
0 and πθ′

0 .

Part (ii). I first prove that Cθ ̸= ∅ is a necessary condition for local robustness and

then show that it is also sufficient.

Necessity. Suppose θ is locally robust at some full-support prior πθ
0. It follows from

Theorem 1 and identifiability that there exists ω̂ ∈ Ωθ such that the degenerate belief

δω supports a p-absorbing SCE under θ, i.e., Cθ ̸= ∅.
Sufficiency. Suppose model θ has no traps and Cθ ̸= ∅. I now show that model θ is

locally robust for all full-support priors. Take any ω̂ ∈ Cθ and any full-support prior

πθ
0. Consider the probability measure Pθ,ω̂

S , i.e., the probability measure over infinite

histories H induced by the switcher if the true DGP is as described by θ and ω̂. By

identifiability and Lemma 4, the posterior πθ
t converges to δω̂ almost surely under Pθ,ω̂

S .

So for any µ > 0, we can find a set of length-T histories ĤT−1 with positive measure

where the posterior for model θ enters the µ-neighborhood of δω̂, i.e., π
θ
T ∈ Bµ(δω̂). Let

µ be small enough so that the posterior πθ
T (ω̂) > 1/

√
α. By absolute continuity and

the finiteness of T , we know ĤT−1 is also realized with positive probability under the

true measure PS.

Next I show that for any η ∈ (0, 1), we can choose ϵ to be sufficiently small such

that for any θ′ ∈ Nϵ(θ) and prior πθ′
0 ∈ N θ,θ′

ϵ (πθ
0), the probability that λt never exceeds√

α before period T is strictly larger than η. For each ω ∈ Ωθ, with a slight abuse of

notation, denote the set of ϵ-nearby parameters within θ′ by N θ,θ′
ϵ (ω) := {ω′ ∈ Ωθ′ :

d(Qθ,ω, Qθ′,ω′
) ≤ ϵ}. Let ϵ be sufficiently small such that N θ,θ′

ϵ (ω) is disjoint across Ωθ.
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By construction we have πθ′
0 (N

θ,θ′
ϵ (ω)) ≤ πθ

0(ω) + ϵ. Hence,

λt =
ℓt(θ

′)

ℓt(θ)
=

∑
ω∈Ωθ

∑
ω′∈Nθ,θ′

ϵ (ω)
πθ′
0 (ω′)

∏t
τ=0 q

θ′ (yτ |aτ , ω′)∑
ω∈Ωθ πθ

0 (ω)
∏t

τ=0 q
θ (yτ |aτ , ω)

<

∑
ω∈Ωθ(πθ

0 (ω) + ϵ)
∑

ω′∈Nθ,θ′
ϵ (ω)

µ0(ω
′)
∏t

τ=0 q
θ′ (yτ |aτ , ω′)∑

ω∈Ωθ πθ
0 (ω)

∏t
τ=0 q

θ (yτ |aτ , ω)

where µ0(ω
′) :=

πθ′
0 (ω′)

πθ′
0

(
Nθ,θ′

ϵ (ω)
) . We can treat the collection of N θ,θ′

ϵ (ω) as a new model

and µ0 as the associated prior. This allows us to write the sum of the likelihoods in

recursive form,

∑
ω′∈Nθ,θ′

ϵ (ω)

µ0(ω
′)

t∏
τ=0

qθ
′
(yτ |aτ , ω′) =

t∏
τ=0

 ∑
ω′∈Nθ,θ′

ϵ (ω)

µτ (ω
′)qθ

′
(yτ |aτ , ω′)

 .

Let Q̂µ :=
∑

ω′∈Ωθ′ µ(ω′)Qθ′,ω′
. Note that for any µ ∈ ∆(N θ,θ′

ϵ (ω)), we have d(Qθ,ω, Q̂µ) ≤
ϵ. Therefore, by Lemma 9 in Online Appendix C, for any r > 0 and γ < 1, when ϵ is

sufficiently small, the probability that∑
ω′∈Nθ,θ′

ϵ (ω)
µ0(ω

′)
∏t

τ=0 q
θ′ (yτ |aτ , ω′)∏t

τ=0 q
θ (yτ |aτ , ω)

≤ (1 + r)t+1 (8)

occurs is larger than γ. Since Ωθ is finite, this implies that for any r > 0 and η < 1,

we can find ϵ sufficiently small such that the probability that Eq. (8) occurs for every

ω ∈ Ωθ is larger than η. Notice that when Eq. (8) occurs for every ω ∈ Ωθ,

λt < max
ω∈Ωθ

(
1 +

ϵ

πθ
0(ω)

)
(1 + r)t+1 .

Hence, for any η > 0, we can choose ϵ to be sufficiently small so that the probability

that λt does not exceed
√
α for t = 0, ..., T − 1 is larger than η. Denote the length-

(T + 1) histories where λt ≤
√
α for t = 0, ..., T − 1 as H̃T−1. Recall that ĤT−1 is

realized with positive probability. Since the choice of η is arbitrary, we can choose ϵ

sufficiently small so that the probability that ĤT−1 ∩ H̃T−1 is strictly positive.

Finally, note that for any t > T , we can write

λt = λT−1

∑
ω′∈Ωθ′

∏t
τ=T πθ′

τ (ω
′)qθ

′
(yτ |aτ , ω′)∑

ω∈Ωθ

∏t
τ=T πθ

τ (ω)q
θ(yτ |aτ , ω)

:= λT−1λT,t.
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Recall that on histories ĤT−1 ∩ H̃T−1 we have πθ
T (ω̂) > 1/

√
α, so we can use the same

arguments as in part (i) to show that PS(λT,t ≤
√
α, ∀t > T ) > 0. Since on these

histories the agent does not switch before period T and ϵ is small enough such that

λT−1 <
√
α, we have

PS(λt ≤ α, ∀t ≥ 0)

≥PS(ĤT−1 ∩ H̃T−1) · PS(λT,t ≤
√
α, ∀t ≥ T ) > 0.

B.5 Proof of Theorem 3

Note that in the proof of Theorem 2, I prove the sufficiency of prior tightness for

global robustness without using the assumption that α > 1. When α = 1, the prior

tightness requirement πθ
0(C

θ) = 1 is equivalent to Cθ = Ωθ. Therefore, Cθ = Ωθ is also

a sufficient condition for global robustness when α = 1. Now it suffices to show that

Cθ = Ωθ is a necessary condition for local robustness when α = 1.

Suppose θ ∈ Θ admits at least one p-absorbing SCE and πθ
0(C

θ) < 1. This implies

that there exists ω̃ ∈ Ωθ such that ω̃ ̸∈ Cθ. Consider a local perturbation of model θ,

denoted by θ′, with the same parameter space Ωθ′ = Ωθ and prior πθ′
0 = πθ

0 but slightly

different prediction for ω̃:

qθ
′
(·|a, ω) =

qθ(·|a, ω) if ω ̸= ω̃

µqθ(·|a, ω) + (1− µ)q∗(·|a) if ω = ω̃

Then for any ϵ > 0, when µ ∈ (0, 1) is close enough to 1, we have θ′ ∈ Nϵ(θ). Suppose

θ is locally robust and thus persists against θ′ for sufficiently small ϵ at priors πθ
0 and

πθ′
0 . Then the Bayes factor satisfies

λt =

∑
Ωθ′ πθ′

0 (ω
′)
∏t

τ=0 q
θ(yτ |aτ , ω′)∑

Ωθ πθ
0(ω)

∏t
τ=0 q

θ(yτ |aτ , ω)

=

∑
ω ̸=ω̃ π

θ
0(ω)

∏t
τ=0 q

θ(yτ |aτ , ω) + πθ
0(ω̃)

∏t
τ=0 q

θ′(yτ |aτ , ω̃)∑
ω ̸=ω̃ π

θ
0(ω)

∏t
τ=0 q

θ(yτ |aτ , ω) + πθ
0(ω̃)

∏t
τ=0 q

θ(yτ |aτ , ω̃)
.

If θ persists against θ′, then there exists T > 0 such that λt ≤ α = 1 for all t ≥ T ,
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which holds if and only if
∏t

τ=0 q
θ′ (yτ |aτ ,ω̃)∏t

τ=0 q
θ(yτ |aτ ,ω̃)

≤ 1 for all t ≥ T. This is further equivalent to

t∑
τ=0

ln
µqθ(yτ |aτ , ω̃) + (1− µ)q∗(yτ |aτ )

qθ(yτ |aτ , ω̃)
≤ 0,∀t ≥ T.

By concavity of the log function, the above inequality holds only when

t∑
τ=0

ln
qθ(yτ |aτ , ω̃)
q∗(yτ |aτ )

≥ 0,∀t ≥ T. (9)

Note that for any a ∈ A such that qθ(·|a, ω̃) ̸= q∗(·|a),

DKL

(
q∗(yτ |aτ ) ∥ qθ(yτ |aτ , ω̃)

)
> 0.

Therefore, Eq. (9) holds only if there exists T ′ ∈ N+ such that qθ(·|at, ω̃) = q∗(·|at) for
any t ≥ T ′. This contradicts the assumption that ω̃ ̸∈ Cθ. Hence, θ cannot be locally

robust. □

B.6 Proof of Proposition 1

Without loss of generality, assume gaω > 0 and gab ≤ 0. Define correspondence I :

[ω, ω] ⇒ [ω, ω], such that I(ω) returns all best-fitting fundamentals at any myopically

optimal action against the degenerate belief δω. That is, for any ω̂ ∈ I(ω), there exists

â ∈ Aθ
m(δω) such that

g(â, b̂, ω̂) = g(â, b∗, ω∗).

When b̂ > b∗, I(ω) < ω∗; when b̂ < b∗, I(ω) > ω∗. Fix any b̂, there exists a strictly

increasing sequence {ωk}Kk=0 with K ≥ 1, ω0 = ω, ωK = ω such that some action

denoted by ak ∈ A is the unique myopically optimal action over (ωk−1, ωk), a
k < ak+1,

and both ak and ak+1 are myopically optimal at ωk if 0 < k < K. Hence, I(ω) is a

constant function within each (ωk−1, ωk) and contains two elements if ω = ωk for interior

k, which are given by limω↑ωk
I(ω) and limω↓ωk

I(ω). If there exists a self-confirming

equilibrium under model θ, then it must be supported by a degenerate belief at ω such

that I(ω) ∋ {ω}. If I(ω) = {ω} ⊂ (ωk−1, ωk) for some k, then ak is a strict SCE (hence

p-absorbing) with the supporting belief δω. For convenience, when I(ω) = {ω̂}, I abuse
notation and write I(ω) = ω̂.

Suppose b̂ > b∗, then I jumps up discontinuously at all cutoffs {ωk}1≤k≤K−1. By
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assumption, min I(ω0) ≥ ω0 and I(ωK) < ω∗ < ωK . To find a strict SCE, consider the

following procedure. First, check whether max I(ω0) > ω0. If not, then I(ω0) = ω0,

and a1 is a strict SCE supported by the belief δω0 . If instead max I(ω0) > ω0, iterate

over k = 1, . . . , K−1: (1) Check whether min I(ωk) < ωk. If so, then ak is a strict SCE

supported by some ω ∈ (ωk−1, ωk). (2) If not, then max I(ωk) > ωk, and the procedure

continues to ωk+1. If the final case satisfies max I(ωK−1) > ωK−1, then aK is a strict

SCE supported by some ω ∈ (ωK−1, ωK). By Corollary 1, model θ is locally robust.

Now suppose b̂ < b∗, then I jumps down discontinuously at the cutoffs {ωk}1≤k≤K−1.

Hence, there exists at most one solution to I(ω) = ω. When b̂ = b∗, there exists a

unique solution to I(ω) = ω, i.e., ω = ω∗. Let β0 = b∗. Now suppose there exists an

SCE a† when the agent believes his ability is given by some b̃ < b∗. If maxAθ
M(ω∗) = a†,

then by the upper-hemicontinuity of Aθ
M , when b̂ is lower than but sufficiently close to

b̃, there exists some ω̂ > ω∗ such that g(a†, b̂, ω̂) = g(a†, b∗, ω∗) and a† is the unique

myopically optimal action given belief δω̂. It follows that a
† is a strict SCE. When b̂ is

sufficiently lower than b̃ such that a† ∈ Aθ
M(ω̂) but a† ̸= maxAθ

M(ω̂) for the first time,

a† is still an SCE but no longer strict. Given such b̂, if the agent believes his ability is

b̂− ϵ and ϵ is sufficiently small,

g(a†, b̂− ϵ, ω̂) < g(a†, b∗, ω∗),

but for any a†′ > a†,

g(a†′, b̂− ϵ, ω̂) > g(a†′, b∗, ω∗).

Therefore, I(ω) = ω admits no solution when the agent’s self-perception is b̂− ϵ when

ϵ is sufficiently small. Note that when b̂ = b∗, the objectively optimal a∗ is a SCE, so

there exists a strict SCE for any b̂ lower than but sufficiently close to β0. By assumption,

there exists b̂ ∈ (b, b) such that a∗ is no longer optimal at the inferred fundamental.

Thus, letting β1 = b̂, there exists no SCE for b̃ lower than but sufficiently close to β1.

Iterating this argument leads to the interval structures described in the proposition. □

B.7 Proof of Proposition 2

Part (i) is a direct corollary of Theorem 2. I now prove a more general result that implies

the first half of Part (ii), i.e., model θ̂ eventually replaces θ with positive probability.

The proof for the second half of Part (ii) can be found in Online Appendix E.2.

Proposition 3. Fix any E = (θ, θ̂, πθ
0, π

θ̂
0) such that both θ and θ̂ satisfy the no-trap
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condition. Suppose θ̂ is globally robust at all priors and θ is not globally robust at πθ
0.

Then there exists some T ∈ N such that mt = θ, ∀t ≥ T with positive probability.

Proof. It suffices to show that the agent switches to θ̂ at least once with positive

probability. It then follows from the fact that θ̂ is globally robust at all priors that θ̂

is eventually adopted forever with positive probability.

Define a new probability measure P̂ over the action and outcome histories H such

that for any histories Ĥ ⊂ H,

P̂
(
Ĥ
)
=
∑
ω′∈C θ̂

πθ̂
0(ω)P

θ̂,ω′

S

(
Ĥ
)
,

where Pθ̂,ω′

S is the probability measure over histories induced by the agent if the DGP

prescribed by θ̂ and ω′ is the true DGP. Then
∑

ω∈Cθ πθ
0(ω)ℓt(θ,ω)/π

θ
0(C

θ)

ℓt(θ̂)
is a martingale

w.r.t. P̂ with an expectation of 1 at t = 0. Hence, for any η > 1, the probability that∑
ω∈Cθ πθ

0(ω)ℓt(θ,ω)/π
θ
0(C

θ)

ℓt(θ̂)
≤ η for all t is positive (measured by P̂). On the paths where

the model choice eventually equals θ, the agent’s posterior πθ
t almost surely converges

to some δω where ω ∈ Cθ. Taken together, on paths where mt eventually equals θ, it

happens with positive probability (measured by P̂) that
∑

ω∈Cθ πθ
0(ω)ℓt(θ,ω)/π

θ
0(C

θ)

ℓt(θ̂)
≤ η for

all t and πθ
t

a.s.−−→ δω where ω ∈ Cθ. This then implies that for any ϵ > 0, we can construct

a finite sequence of outcome realizations (y0, ..., yt−1) such that
∑

ω∈Cθ πθ
0(ω)ℓt(θ,ω)/π

θ
0(C

θ)

ℓt(θ̂)

for all t ≤ T and πθ
T ∈ Bϵ(δω) where ω ∈ Cθ. Since T is finite, this sequence of

outcomes is realized with positive probability under the true measure PS. Notice that

ℓT (θ̂)

ℓT (θ)
= πθ

T (C
θ)

ℓT (θ̂)∑
ω∈Cθ πθ

0(ω)ℓt(θ, ω)
≥ 1− ϵ

ηπθ
0(C

θ)
,

where the right-hand side is strictly larger than α when πθ
0(C

θ) < 1/α if ϵ is close

enough to 0 and η is close enough to 1. Therefore, the agent switches from θ to θ̂ with

positive probability.
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